MATEMATUKA

в. РОХЛИН

О ПРОБЛЕМЕ КЛАССИФИКАЦИИ АВТОМОРФИЗМОВ ПРОСТРАНСТВ ЛЕБЕГА

(Представлено академиком А. Н. Колмогоровым 12 IV 1947)

В этой заметке я пользуюсь терминологией, обозначениями и ре-

зультатами моей заметки $\binom{1}{1}$.

1. Автоморфизм U пространства Лебега M есть изоморфизм M на самое M. Множество A инвариантно относительно U, если $UA \subset A$. U называется транзитивным, если мера всякого измеримого инвариантного множества равна либо нулю, либо единице. Первой задачей теории является классификация автоморфизмов пространств Лебега.

На пути к общему решению этой проблемы сделан пока только один шаг: J. v. Neumann'y (2) удалось в известном смысле разложить произвольный автоморфизм на транзитивные компоненты *. К этому

разложению можно притти следующим образом **.

Назовем разбиение ζ неподвижным относительно U, если все его элементы C (а следовательно, и все ζ -множества) инвариантны относительно U. Если ζ измеримо, то множества C можно рассматривать как пространства Лебега ((¹), n° 10), и U индуцирует в них некоторые автоморфизмы U_C — компоненты автоморфизма U. В этом смысле каждому неподвижному относительно U измеримому разбиению отвечает (аддитивное) разложение автоморфизма U. Среди всех таких разложений существует mod 0 самое мелкое: разложение, отвечающее измеримой оболочке ((¹), n° 9) разбиения пространства M на траектории, пробегаемые его точками под действием автоморфизмов Uⁿ (n=0, \pm 1, \pm 2,...). Это и есть разложение автоморфизма U на транзитивные компоненты. Оно называется в дальнейшем каноническое разложение автоморфизма U определяется им mod 0 однозначно.

2. Результаты, излагаемые в этой заметке (n° 4), позволяют определить тип произвольного автоморфизма по типам его транзитивных компонент и тем самым сводят проблему классификации автоморфизмов общего вида к проблеме классификации транзитивных автоморфизмов. Формулировка этих результатов требует некоторых предвагительных рассмотрений.

Пусть M, как и выше, — пространство Лебега, и R — некоторое метрически абсолютное G_δ со счетной базой. Рассмотрим в теоретикомножественном произведении $M \times R$ множеств M и R подмножества

вида

$$Z = X \times Y, \tag{*}$$

^{*} Точнее, в $(^2)$ дано разложение потока (см. ниже, n° 5). ** Ср. (\cdot) и $(^4)$.

где X—измеримое множество в M, а Y—открытое множество в R. Суслинские mod 0 множества, порожденные множествами вида (*), т. е. множества вида S+N, где S—суслинское множество, порожденное множествами вида (*), а N—множество, проекция которого в M имеет меру нуль, мы будем называть измеримым и L-A. Функцию φ , однозначную или многозначную, определенную на M и имеющую R областью своих значений, мы будем называть измеримой, если множество $\bigcup x \times \varphi(x)$, где $\varphi(x)$ есть множество всех значений функции φ в точке x и суммирование распространено на все точки $x \in M$, измеримо L-A. Если φ однозначна, то это определение эквивалентно обычному.

3. Обозначим через \mathfrak{G}_M группу (классов тождественных mod 0) автоморфизмов пространства M. Если объявить окрестностью (класса) автоморфизма U_0 мно жество (классов) автоморфизмов U, удовлетво-

ряющих конечному числу неравенств вида

$$\mu (U_0A + UA - U_0A \cdot UA) < \varepsilon$$
,

где A — измеримое множество, а ϵ — положительное число, то \emptyset м

станет метрически абсолютным G_{δ} со счетной базой.

Структура \mathfrak{G}_M целиком определяется структурой пространства M, т. е. последовагельностью чисел $m_n(M)$ ((¹), n° 5); если мера \mathfrak{p} непрерывна, то вместо \mathfrak{G}_M мы пишем \mathfrak{G}_0 . Условимся называть типы транзитивных автоморфизмов пространств Лебега транзитивных типов пространства M, т. е. множество классов сопряженных элементов группы \mathfrak{G}_M ; если мера \mathfrak{p} непрерывна, то вместо \mathfrak{G}_M мы пишем \mathfrak{G}_0 . Наконец, обозначим через τ_n тип автоморфизма, который определен в пространстве Лебега. состоящем из n точек меры 1/n, и производит циклическую перестановку этих точек. Присоединив к множеству \mathfrak{G}_0 все типы τ_n , мы получим множество \mathfrak{G} в с е х транзитивных типов. Условимся понимать под семейством транзитивных типов (однозначную) функцию, отображающую пространство Лебега M в множество \mathfrak{G} .

Всякому семейству Ф транзитивных типов отвечает разбиение

пространства М:

$$M=P+\bigcup_{n=1}^{\infty}P_n$$

где P есть множество тех $x \in M$, для которых $\Phi(x) \in \mathfrak{G}_0$, а P_n —

множество тех $x \in M$, для которых $\Phi(x) = \tau_n$.

Мы будем называть семейство Φ измеримым, если: 1) все P_n измеримы и 2) определенная на P (многозначная) функция, значениями которой в каждой точке $x \in P$ являются все элементы пространства \mathfrak{G}_0 типа $\Phi(x)$, есть измеримая функция в смысле n° 2.

4. Теперь мы в состоянии формулировать основной результат. Типы $\tau(U_C)$ транзитивных компонент автоморфизма U, определенного в пространстве Лебега M, образуют семейство транзитивных типов, определенное на фактор-пространстве M/ζ пространства M по каноническому разбиению ζ . Мы обозначим это семейство через Φ_U . Очевидно, что тип $\tau(\Phi_U)$ семейства Φ_U является инвариантом автоморфизма U.

Оказывается, что семейство Φ_U измеримо, и если $\tau(\Phi_U) = \tau(\Phi_V)$, то U и V mod 0 изоморфны. При этом, каков бы ни был тип τ измеримого семейства транзитивных типов, всегда существует такой

автоморфизм U, что $\tau(\Phi_U) = \tau$.

5. Все сказанное в предыдущем n° дословно переносится на случай, когда вместо отдельного автоморфизма U (или, что то же, вместо циклической группы автоморфизмов U° , $n=0,\pm 1,\pm 2,\ldots$) рассматри-

вается поток U^t (— ∞ < t < ∞), т. е. непрерывная (lim U^t = U^{t_0} в пространстве \mathfrak{G}_M) однопараметрическая группа (U^{t+s} = U^tU^s) автоморфизмов. Нужно только всюду заменить слово "автоморфизм" словом "поток" и символ U символом U^t . Конечно, соответствующим образом должны быть модифицированы и определения $n^\circ n^\circ$ 1 и 3. Так получаются определения транзитивного потока, канонического разложения потока U^t на транзитивные компоненты U^t типов τ (U^t) и семейства Φ^t_U .

Особого замечания заслуживает определение топологии в группе \mathfrak{G}_M (классов тождественных mod 0) потоков, которая появляется на месте группы \mathfrak{G}_M : окрестность (класса) потока U_0 есть множество (классов) потоков U_0 , удовлетворяющих конечному числу неравенств вида

$$\mu \left(U_0^t A + U^t A - U_0^t A \cdot U^t A\right) < \varepsilon,$$

где A — измеримое множество, ϵ — положительное число и t принадлежит некоторому конечному интервалу. Эта топология делает группу G_{M} метрачески-абсолютным G_{δ} .

Наконец, определение измеримого семейства транзитивных типов в случае потоков даже проще соответствующего определения n° 3, ибо в случае потоков множество \mathfrak{G}' всех транзитивных типов состоит из множества \mathfrak{G}' типов транзитивных потоков в пространстве Лебега с непрерывной мерой и одного единственного тривиального типа, представляющего собою тип потока в пространстве Лебега, состоящем из одной точки.

Поступило 12 IV 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. Рохлин, ДАН, **58**, № 1 (1947). ² J. v. Neumann, Ann. of Math., **33**—587 (1932). ⁵ Р. R. Halmos, Duke Math. J., **8**, 386 (1941). ⁴ W. Ambrose P. R. Halmos, S. Kakutani, Duke Math. J., **9**, 43 (1942).