химия

Л. И. АНЦУС и член-корреспондент АН СССР А. Д. ПЕТРОВ

О ГИДРОПОЛИМЕРИЗАЦИИ АЦЕТИЛЕНА НА ПСЕВДОБУТИЛЕН ПОД АТМОСФЕРНЫМ ДАВЛЕНИЕМ

В сообщении (1) были охарактеризованы условия, позволяющие под атмосферным давлением при температуре 170° обрывать каталитическую гидрополимеризацию ацетилена на стадии гидродимера изоструктуры (изобутилена). Этот последний удалось получить со столь же высокими выходами, которые были нами ранее (2) получены при проведении процесса при $35-40^\circ$, под давлением 25 атм. и при отношении $H_2: C_2H_2 = 3:1$. Под атмосферным давлением высокий выход изобутилена был достигнут при объемной скорости 400-500 л и при отношении $H_2: C_2H_2 = 4:1$.

При дальнейшем ведении работы мы убедились, что катализатор, дающий изобутилен под атмосферным давлением, воспроизводится с трудом, в отличие ог легкой воспроизводимости (и большей стабильности работы) контакта под давлением и при указанной низкой тем-

пературе.

При многочисленных новых попытках получить изобутилен под атмосферным давлением мы установили, что чаще (над катализатором того же состава и в тех же условиях) у нас образуется псевдобутилен. Таким образом, в то время как под давлением и при низких температурах в равновесной схеме изобутилен $\gtrsim n$ -бутилены равновесие количественно сдвинуто в сторону первого, под атмосферным давлением и при повышенной температуре оно сдвинуто в сторону n-бутенов (а изобутилен в этих условиях является лабильной формой).

В указанных в табл. 1 условиях с катализатором № 1 был проведен опыт длительностью 80 час. Было пропущено 910 л ацетилена, основная масса которого (около $80^{\circ}/_{\circ}$) пошла на образование псевдобутилена. Жидкой фазы (отсутствующей при работе на изобутилен даже под атмосферным давлением) было собрано 110 г, или $12^{\circ}/_{\circ}$ от взятого ацетилена. Еще более низким (примерно вдвое, при оптимальных соотношениях водорода и ацетилена) оказался выход этилена.

Отходящий газ конденсировался в охлаждаемых змеевиках, сливался в перегнанный после обработки перманганатом ацетон и подвергался окислению $1^0/_0$ раствором $\mathrm{KMnO_4}$. В продуктах окисления

была найдена только уксусная кислота.

При просмотре данных табл. 1 видно, что по выходу псевдобутилена состав катализатора № 2 является оптимальным. Повышением пропорции добавки галогенида металла не удается сколько-нибудь заметно снизить процент ацетилена, гидрируемого в этилен, и в то же время это повышение пропорции галогенида обусловливает некогорую неполноту превращения ацетилена. Невыгодным представляется также и железный контакт (катализатор № 3) ввиду его ничтожной полимеризующей эффективности, вследствие чего реакция гидрирования

3*

ацетилена в этилен здесь из побочной превращается в основную. Повидимому, некоторое влияние на наличие или отсутствие димеризации, помимо генезиса контакта, оказывает даже характер носителя.

Таблица 1

Отнош. Н _в : С ₂ Н ₂	Темпера- тура, °С	Скорость пропуск. Н ₂ , л/мин.	Скорость пропуск, С _в Н _в , л/мин.	Скорость отходящ. газа, л/мин.	Состав отходящего газа в объемн. ^п /о			
					ацетилена	изобути- лена	псевдобу- тилена	этилена
		Кат	гализ	атор	.Ne 1			
5:1 4,7:1 4:1 3:1 2:1 1:1	160—170 160—170 160—185 170 150—190 170—190	1,00 0,85 0,64 0,64 0,47 0,26	0,20 0,18 0,16 0,22 0,23 0,24	0,84 0,71 0,52 0,51 0,36 0,23	3 4 6 8 15 27	$\begin{bmatrix} & 0 & \\ & 0 & \\ & 0 & \\ & 0 & \\ & 3 & \\ & 2 & \end{bmatrix}$	47 46 45 44 32 29	3 6 7 5 15 22
		Кат	ализ	атор	№ 2			
5:1 4:1 3:1 1:1	$^{170}_{180-185}$ $^{210}_{192-202}$	0,80 1,00 0,90 0,43	0,16 0,25 0,30 0,43	0,82 0,75 0,33	$ \begin{array}{ c c c } 0 & 0 \\ 0 & 0 \\ 22 & \end{array} $	$\begin{bmatrix} 0\\0\\0\\2 \end{bmatrix}$	53 52 52,5 29	9 9 9,5 22
	Катал	изатор	№ 3 же	лезный	, oca	жден	иный	
3:1 2:1 1:1	220—250 230—240 205—210	$\begin{bmatrix} 0 & 60 \\ 0 & 62 \\ 0 & 46 \end{bmatrix}$	0,18 0,36 0,40	0,45 0,42 0,50	0 . 14 48	$\begin{bmatrix} & 0 \\ & 0 \\ & 0 \end{bmatrix}$	5 4 2	43 22 14

Большое значение в синтезе гидродимеров, наряду с другими факторами, имеет также степень разогрева катализатора и длительность разогрева его. Разогрев наблюдается при всех условиях опытов, но смола и сажа отлагаются лашь при малых пропорциях водорода.

Было отмечено также, что контакты, работающие на изо- или псевдобутилены с результатами, приведенными в таблицах (настоящей и предыдущей работ), начинают так работать не сразу, а спустя несколько часов. В первое же время и оптимальные для образования

тидродимеров контакты дают этилен.

Выводы. 1. В результате большого числа опытов установлено, что при гидродимеризации ацетилена под атмосферным давлением и при 170° изобутилен является лабильной формой и преимущественно в этих условиях (и над тем же катализатором) образуются: псевдобутилен (с выходом в 80°/0) и жидкие продукты полимеризации с выходом в 10—12°/0 на ацетилен.

2. Показано, что образование этилена по обычной реакции может

быть снижено до $5-10^{\circ}/_{0}$.

Поступило 2 VII 1947

НИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. И. Анцуси А. Д. Петров, ДАН, **53**, № 7, 623 (1946). ² А. Д. Петрови Л. И. Анцус, ЖФХ, **14**, № 9—10 (1940).