ФИЗИКА

Э. С. САРКИСОВ

РАСЧЕТ МЕЖАТОМНЫХ РАССТОЯНИЙ МЕТАЛЛОВ И ИХ СПЛАВОВ

(Представлено академиком И. И. Черняевым 6 VI 1947)

В предыдущей работе (¹) нами было получено универсальное уравнение для расчета характерных атомных радиусов всех элементов в кристаллах:

$$R = C_R F^{1_s} / f^{1_s}, \tag{1}$$

где $F = Z^{*/*}$ — число электронов в атоме, не участвующих в эффекте экранирования поля ядра; f — число свободных электронов (для элементов подгрупп A f = N и для элементов подгрупп B f = 8 - N; через N обозначается максимальное число валентных электронов по периодической системе Менделеева); C_R — универсальная константа. Было найдено, что константа $C_R = 1,16$ для металлических атомов с координационным числом k = 12.

Уравнение (1), полученное нами для расчета атомных радиусов элементов в кристаллах, может служить также для расчетов межатомных расстояний металлов и металлических сплавов и соединений. Для определения межатомных расстояний бинарных сплавов уравнение будет иметь следующий вид:

$$d = C_{d} \frac{pF_{1}^{1/s} + (1-p)F_{2}^{1/s}}{\left[pf_{1} + (1-p)f_{2}\right]^{1/s}},$$
(2)

где d — межатомное расстояние; f_1 и f_2 — числа свободных электронов соответствующих компонентов сплава; F_1 и F_2 — числа электронов, не участвующих в эффекте экранирования поля ядра соответствующих компонентов сплава; p — атомные доли или атомные проценты, деленные на 100.

Аналогичным образом можно написать следующее уравнение для любого порядка металлических сплавов:

$$d = C_{d} \frac{p_{1}F_{1}^{\prime_{1}} + p_{2}F_{2}^{\prime_{1}} + \dots + [1 - (p_{1} + p_{2} + \dots + p_{n-1})]F_{n}^{\prime_{1}}}{\{p_{1}f_{1} + p_{2}f_{2} + \dots + [1 - (p_{1} + p_{2} + \dots + p_{n-1})]f_{n}\}^{1/2}}.$$
(3)

При $F_1 = F_2 = F$ и $f_1 = f_2 = f$ уравнение (2) становится тождественным с уравнением (1) и позволяет вычислить межатомные расстояния металлов, ибо при этом

$$d = 2R = C_d F^{1/s} / f^{1/s} \,. \tag{4}$$

Для металлов и сплавов, кристаллизующихся в гранецентрированную кубическую решетку (k = 12), константа $C_d = 2C_R$ или $C_d = 2 \cdot 1, 13 = 2, 32$. Так как эта константа находится в зависимости от типа структуры и ее координационного числа, то необходимо каждый 6 дан ссср. т. LVIII, № 8 1645

Таблица 2

Пространственно-центрированная кубическая решетка (Координационное число $k=8; C_{d}=2.25$)

Кубическая решетка с центрированными гранями (Координационное число k=12; $C_d = 2,32$)

-			_			
Хим. состан	f_1	f2	f ₃	<i>d</i> _{эксп} в Å	d _{выч.} поф-л∈ (3) в Å	Δ Β ⁰ / ₀
$\begin{array}{c} X_{MM.} \ \text{coctar} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} f_{1} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	f = f =		<i>d</i> _{эксп} в А 3,00 3,66 4,62 4,86 5,24 4,34 3,13 2,61 2,86 2,49 2,72 2,47 2,55 2,84 2,33 2,73 2,88 2,55 2,84 2,33 2,73 2,88 2,55 2,84 2,55 2,84 2,55 2,80 3,15 3,33 3,49 3,24 3,16 2,94	$\begin{array}{c} a\\ a_{\rm Bh44,}\\ n_0 \varphi_{-\pi\epsilon}\\ (3) & {\rm B}\ {\rm \AA}\\ 2,873\\ 3,834\\ 4,329\\ 5,019\\ 5,481\\ 4,368\\ 3,218\\ 2,642\\ 3,004\\ 2,508\\ 2,843\\ 2,321\\ 2,557\\ 2,790\\ 2,369\\ 2,706\\ 2,843\\ 2,321\\ 2,557\\ 2,790\\ 2,369\\ 2,706\\ 2,846\\ 3,017\\ 2,561\\ 2,453\\ 2,463\\ 3,318\\ 3,067\\ 2,908\\ 2,720\\ 3,262\\ 3,409\\ 3,630\\ 3,401\\ 3,182\\ 2,849\\ 2,849\\ \end{array}$	$ \begin{array}{c} \Delta \\ B & ^{\eta} \rho \\ \hline \\ -4 \\ +5 \\ -6 \\ +3 \\ +1 \\ +1 \\ +3 \\ +1 \\ +1 \\ +3 \\ -6 \\ 0 \\ 2 \\ +1 \\ +1 \\ +3 \\ -2 \\ +1 \\ +2 \\ +3 \\ +2 \\ +3 \\ +2 \\ +3 \\ +1 \\ +3 \\ +1 \\ +3 \\ +1 \\ +3 \\ +1 \\ +3 \\ +1 \\ +3 \\ +1 \\ +1$
LiGa Cu ₅ Sn AlCu ₃ Sb ₂ Tl ₇ Ag ₂ Al	1 7 3 3 7	5 4 7 5 3		2,68 2,57 2,546 3,351 2,806	2,669 2,604 2,512 3,525 2,736	+ 0 + 1 + 1 + 5 + 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 0 7 1 2 7	7 5 4 6 3 7		2,416 3,308 2,468 2,836 3,239 2,554	2,353 3,467 2,422 2,781 3,291 2,49	-2 -3 +5 -2 +2 +2 -3
Cu_2MnSn . Li_2HgTl . Ni_2MgSb . Ni_2MgSn .	7 1 8 8	7 6 2 2	4 5 3 4	2,671 2,90 2,620 2,642	2,644 2,985 2,695 2,649	-1 + 3 + 3 + 3 = 0

Хим. состав	f1	f 2	^d әксп в А	d _{выч} поф-ле (3) в Å	Д в %
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 8 2 8 4 5 3 3 7 8 8 1 2 2 2	7 5 8 8 6 8 6 7 7 4 4 4 5	2,80 2,65 3,252 2,503 2,475 3,295 2,517 2,80 2,65 2,60 2,62 3,46 3,54 3,39	2,884 2,814 3,161 2,423 2,452 3,431 2,473 2,73 2,724 2,603 2,69 3,794 3,794 3,908 3,549	$ \begin{array}{r} +3 \\ +3 \\ -3 \\ -1 \\ +2 \\ -2 \\ +3 \\ +10 \\ +9 \\ +10 \\ +5 \end{array} $

Примечание. В настоя дей таблице не приводятся данные для металлов, кристаллизую-щихся в гранецентрированную кубическую решет-ку, так как они представляют удвоенные значения атомных ралиусов ($C_d = 2C_R$), приведенных нами в предыдущей работе (1).

Таблица З

Решетки с центрированными гранями металлического типа свнедренными гомеополярными атомами (*C*_d = 2,691)

Хим. состав	f_1	f_2	f_3	^и эксп в А	d _{выч} поф-ле (3) в Å	<u>л</u> в %
ZrH ZrN ScN NbN TiN CrN VN NbC TiC TiC VC ZrC ZrC LiH NaH RbN CsH Ti ₁₆ C ₂ H ₈	44354655455411114	1 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 1 1 1 1	3	3,36 3,24 3,13 3,12 2,93 3,01 3,11 3,02 3,14 2,92 3,345 4,04 4,26 4,50 2,99	3,242 3,378 3,273 3,241 3,126 2,907 3,008 3,074 2,946 3,329 2,850 3,230 3,064 3,638 3,934 4,347 4,623 3,088	

раз учитывать поправку на сжатия или расширения решетки при переходе к другим типам структуры. Тогда

$$C_d = 2C_R \,\alpha_k,\tag{5}$$

где ak - коэффициент сжатия или расширения.

Гю Гольдшмидту (²), в структурах пространственно-центрированных кубических с координационным числом k = 8 величина межатомных расстояний должна быть уменьшена на 3⁰/₀, т. е. $\alpha_k = 0,97$. Следовательно, для пространственно-центрированной кубической решетки $C_d = 2C_R \alpha_k = 2 \cdot 1,16 \cdot 0,97 = 2,25$. Для структур типа алмаза с k = 4сжатие по Гольдшмидту достигает 12⁰/₀. На основании большого числа экспериментальных данных нами было найдено, что 'для сплавов и соединений, кристаллизующихся в решетках типа вюрцита—цинковой обманки, коэффициент сжатия $\alpha_k = 0,8$, и по формуле (5) получили злачение $C_d = 1,856$.

При определении расстояния d между атомами металла и металлоида в структуре мышьяковистого никеля (NiAs), в которой металлические атомы совместно с атомами металлоида образуют простую гексагональную решетку таким образом, что каждый атом Ni окружен 6 атомами As, было найдено, что коэффициент сжатия $\alpha_k = 0,87$ и $C_d = 2,018$. В решетках с центрирсванными гранями металлического типа с внедренными гомеополярлыми атомами металлоидов имеет место расширение решетки (³). Нами было установлено, что для этих сплавов (когда атомный процент металлоидов равен 50) коэффициент расширения $\alpha_k = 1,16$ и, следовательно, $C_d = 2,691$.

Таблица 4

Хим. состав	f_1	f_z	d _{эксп} в Å	d _{выч} по ф-ле (3) в А	Д в %	Сумма порядковых нсмеров.
AgJ	7 6 5 4	1 2 3	2,811 2,799 2,793 2,79	2,7%0 2,7%7 2,7%0 2,7%0 2,7%7	$-1 \cdot 0 \\ 0 \\ 0 \\ 0$	$\begin{vmatrix} 100 = 47 + 53\\ 100 = 49 + 52\\ 100 = 49 + 51\\ 100 = 50 + 50 \end{vmatrix}$
CuBr	7 6 5 4		2,46 2,45 2,44 2,43	2,525 2,525 2,526 2,526 2,524	+3 + 3 + 4 + 4	
CuJ ZnTe GaSb CdSe ,	7 6 5 6	$\begin{array}{c}1\\2\\3\\2\end{array}$	2,618 2,64 2,638 2,62	2,649 2,630 2,635 2,661	$^{+1}_{0}_{+1}_{+2}$	82 = 29 + 53 $8^{2} = 30 + 52$ 82 = 31 + 51 82 = 48 + 34
CaCl	7 6 5 3	1 2 3 3	2,341 2,346 2,354 2,437	2,334 2,327 2,321 2,538	0 - 1 - 1 + 4	$\begin{array}{c} 46 = 29 + 17 \\ 46 = 30 + 16 \\ 46 = 31 + 15 \\ 46 = 33 + 13 \end{array}$

Решетки с координационным числом 4 ($C_d = 1,856$)

Пользуясь вышеприведенными значениями коэффициента C_d по уравнению (3), нами были вычислены межатомные расстояния в кристаллах большого числа металлов и их бинарных и некоторых тройных сплавов различных типов структур. В табл. 1—5 межатомные расстояния металлов и их сплавов, вычисленные по уравнению (3), сопоставляются с экспериментальными величинами (4). Во всех случаях, как видно из этих таблиц, совпадение отличное.

Хорошее совпадение между вычисленными и экспериментальными данными служит подтверждением правильности наших предположений относительно величины f для элементов подгрупп A(f=N) и B(f=8-N). Данное согласие результатов подтверждает также целесообразность нашего способа расположения элементов в периодической системе элементов в зависимости от величины f (¹). Уравне-

Таблица 5

		1		1		
Хим. ссстав	fs.		^d эксп в Å	d _{выч} по ф-ле (3) в А	Д в %	
CrS	6 8 8 8 8 8 8 8 6 7 8 7 7 8 8 8 8 6 8 8 7 8 8 8 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3	2,44 2,33 2,45 2,38 2,46 2,55 2,50 2,62 2,64 2,73 2,88 2,73 2,88 2,73 2,73 2,73 2,73 2,73 2,58 2,67 2,67 2,73 2,58 2,70 2,75 2,58 2,67 2,58 2,75 2,58 2,75 2,58 2,75 2,67 2,73 2,75 2,67 2,75 2,75 2,75 2,75 2,75 2,75 2,73 2,73 2,75 2,75 2,75 2,73 2,75 2,75 2,73 2,73 2,75 2,75 2,75 2,73 2,75 2,75 2,75 2,75 2,70 2,70 2,75 2,75 2,75 2,70 2,70 2,75 2,70 2,70 2,75 2,70 2,75 2,70 2,70 2,75 2,70 2,70 2,70 2,75 2,70 2,70 2,70 2,75 2,70	$\begin{array}{c} 2,465\\ 2,321\\ 2,312\\ 2,331\\ 2,521\\ 2,511\\ 2,530\\ 2,637\\ 2,658\\ 2,817\\ 2,720\\ 2,801\\ 2,871\\ 2,572\\ 2,871\\ 2,572\\ 2,559\\ 2,559\\ 2,559\\ 2,559\\ 2,569\\ 2,569\\ 2,703\\ 2,703\\ 2,703\\ 2,703\\ 2,703\\ 2,703\\ 2,703\\ 2,442\\ 2,726\end{array}$	+ 10 - 52 + 11 + 11 + 11 + 11 + 11 + 11 + 11 +	

Структура типа мышьяковистого никеля (NiAs) ($C_d = 2,018$)

ние (3) количественно обосновывает также целый ряд обобщений, установленных на основе опытных данных, в том числе и то положение, что в ряде бинарных соединений, в которых сумма атомных номеров обоих компонентов постоянна и которые кристаллизуются в решетках типа вюрцита — цинковой обманки, межатомные расстояния совпадают между собой с большой точностью (табл. 4). Величины межатомных расстояний в структурах вюрцита — цинковой обманки, так же как и в других структурах, находятся в одинаковой зависамости от значений f и F.

Поступило 6 VI 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Э. С. Саркисов. ДАН, 58, № 7 (1947). ² V. М. Goldschmidt, Z. phys. Chem., 133, 397 (1928). ³ G. Hägg, Nature, 121, 826; 122, 314, 962 (1928); Z. phys. Chem., (B), 4, 346 (19-9); 7, 339; 8, 455 (1930); 11, 162, 433; 12, 33 (1931). ⁴ Энциклопедия металлофизики, 1, Металлическое состояние материи, ч. 1, 1937; P. P. E wald u. C. Hermann, Strukturbericht d. Z. Kristallogr.; Taschenbuch für Chemiker und Physiker, Berlin, 1943.