МАТЕМАТИКА

к. и. бабенко

О БАЗИСАХ В ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ

(Представлено академиком С. Н. Бернштейном 30 І 1947)

Рассмотрим сепарабельное гильбертово пространство H. Последовательность $\{x_h\} \subset H$ называется базисом, если любой элемент $y \in H$ может быть единственным образом представлен в виде:

$$x = \sum_{k=1}^{\infty} a_k x_k,$$

где a_1, a_2, \ldots числа (комплексные).

Последовательность $\{z_k\}$ называется сопряженной с $\{x_k\}$, если

$$(x_n, z_m) = \delta_{nm}.$$

Винер и Палей доказали для пространства L^2 предложение (1),

обобщением которого является следующая

Теорема 1. Пусть $\{x_k\}$ и $\{y_k\}$ — последовательности элементов из H. Если последовательность $\{x_k\}$ образует базис или линейная оболочка над $\{x_k\}$ совпадает с H, то тем же свойством обладает и $\{y_b\}$, если

$$\left\| \sum_{k=1}^{N} a_k (x_k - y_k) \right\| \leqslant \theta \left\| \sum_{k=1}^{N} a_k x_k \right\| \tag{1}$$

при произвольных a_k и N, где $\theta < 1$ не зависит ни от a_k , ни от N. Доказательство. Пусть линейная оболочка над $\{x_k\}$ совпадает с H. Определим в H линейный оператор так:

$$T\left(\sum_{k=1}^n a_k x_k\right) = \sum_{k=1}^n a_k y_k.$$

Если x — произвольный элемент из H, то существует последовательность агрегатов $\left\{\sum a_k x_k\right\}$, сходящаяся к x. Но тогда, в силу (1), последовательность $\left\{\sum a_k y_k\right\}$ сходится к некоторому элементу y. Положим

$$Tx = y$$
.

В силу (1) имеем

$$||E-T|| \leqslant \theta$$
, $||T|| \leqslant 1+\theta$, (2)

где E — тождественный оператор. В силу первого неравенства (2)

существует обратный оператор

$$T^{-1} = \sum_{k=0}^{\infty} (E - T)^{k}, ||T| \leq \frac{1}{1-\theta}.$$

Следовательно, уравнение Tx-y имеет решение при любом $y \in H$, а это означает, что y есть предел агрегатов вида $\sum c_k y_k$.

Таким образом, линейная оболочка над $\{y_k\}$ совпадает с H. Если $\{x_k\}$ — базис, то

$$Tx = T\left(\sum_{1}^{\infty} a_k x_k\right) = \sum_{1}^{\infty} a_k y_k = y.$$

В силу (1) ряд $\sum_{1}^{\infty} a_k y_k$ сходится. Так как существует T^{-1} , то $\{y_k\}$ — базис.

При доказательстве мы нигде не пользовались тем фактом, что H — гильбертово пространство. Достаточно было предположить, что H — линейное векторное пространство.

Если дана полная ортонормированная система $\{x_k\}$ и последовательность $\{y_k\}$ выполняет условие (1), то $\{y_k\}$ — базис такой, что

$$(1-\theta)\left\{\left.\sum_{1}^{\infty}|a_{k}|^{2}\right\}^{1/4}\leqslant\left\|\left.\sum_{1}^{\infty}|a_{k}y_{k}\right\|\leqslant(1+\theta)\left\{\left.\sum_{1}^{\infty}|a_{k}|^{2}\right\}^{1/4}\right\}\right.$$

Следуя Н. К. Бари, базисы, которые обладают свойством:

$$m\left\{\left.\sum_{1}^{\infty} |a_k|^2\right\}^{1/s} \leqslant \left\|\left.\sum_{1}^{\infty} a_k f_k\right\| \leqslant M\left\{\left.\sum_{1}^{\infty} |a_k|^2\right\}^{1/s}\right\}\right\|$$

будем называть базисами Рисса.

Таким образом, исходя из какой-то полной ортонормированной системы $\{e_k\}$, переходя к базисам $\{f_k^{(1)}\}$, $\{f_k^{(2)}\}$,..., $\{f_k^{(n)}\}$ так, чтобы $\{e_k\}$ и $\{f_k^{(i)}\}$, $\{f_k^{(i)}\}$, и $\{f_k^{(i)}\}$ и $\{f_k^{($

Интересно, что последний факт допускает обращение. А именно,

имеет место следующая

Теорема 2. Если $\{f_k\}$ базис Рисса, т. е.

$$m\left\{\left.\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}\right\}^{1/s} \leqslant \left\|\left.\sum_{k=1}^{\infty}\left|a_{k}\right|_{k}\right\| \leqslant M\left\{\left.\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}\right\}^{1/s},\right.$$
(3)

то можно найти такие базисы $\{f_k^{(i)}\}\ (i=0,1,2,\ldots,n)$, что будут иметь место соотношения

$$m_{i} \left\{ \sum_{1}^{\infty} |a_{k}|^{2} \right\}^{1/i} \leq \left\| \sum_{1}^{\infty} a_{k} f_{k}^{(i)} \right\| \leq M_{i} \left\{ \sum_{1}^{\infty} |a_{k}|^{2} \right\}^{1/i},$$

$$M_{n-1} < M_{n-2} < \ldots < M_{1} < M_{0} = M,$$

$$\left\| \sum_{k=1}^{N} a_{k} \left(f_{k}^{(i)} - f_{k}^{(i-1)} \right) \right\| \leq \theta_{i} \left\| \sum_{k=1}^{N} a_{k} f_{k}^{(i)} \right\|,$$

 $i=0,1,\ldots,n; \; \theta_i < 1$, причем $f_k^{(0)} = f_k \; (k=1,2,\ldots), \; \{f_k^{(n)}\}$ — полная ортонормированная система.

Доказательство. Если $\{f_k\}$ — базис, то, как известно, существует сопряженная система $\{g_k\}$. Определим в H линейный оператор так:

$$Af_k=g_h$$
 $(k=1,2,\dots),$ $Ax=\sum_1^\infty a_kg_k,$ если $x=\sum_1^\infty a_kf_k.$

Оператор A определен на тех элементах $x \in H$, для которых ряд $\sum_{k=1}^{\infty} a_k g_k$ сходится. Ясно, что область определения оператора A всюду плотна в Н. Далее,

$$(Ax,x) = \sum_{1}^{\infty} |a_{h}|^{2} > 0.$$

В силу (3)

$$\frac{1}{M^2} ||x||^2 \leqslant (Ax, x) \leqslant \frac{1}{m^2} ||x||^2.$$

Следовательно, оператор A ограничен, определен во всем пространстве и (Ax, x) > 0.

т. е. А — положительный эрмитов оператор. Ясно, что обратный оператор A^{-1} существует и есть ограниченный положительный эрмитов оператор.

Пусть

Тогда

$$0 < \alpha = \inf_{\|x\| = 1} (A^{-1}x, x) < \sup_{\|x\| = 1} (A^{-1}x, x) = \beta.$$

$$A^{-1} = \int_{\beta} \lambda \, dE_{\lambda}, \quad \beta \leq M^{2}.$$

Рассмотрим оператор

$$C^{-1}=\int^{\beta}\lambda^{1/2n}\,dE_{\lambda},$$

где п определяется следующим неравенством:

$$2^{n-1} \leqslant M < 2^n.$$

 C^{-1} — положительный эрмитов оператор,

$$||C^{-1}|| = \beta^{1/2n} < 2$$
, $C^{-2n} = A^{-1}$, $||E - C^{-1}|| = 0 < 1$.

Далее, $C^{2n}=A$. Оператор C переводит элементы f_k в φ_k . $\{\varphi_k\}$ базис, так как, если $x=\sum_{k=0}^{\infty}a_{k}f_{k}$, то $\sum_{k=0}^{\infty}a_{k}\phi_{k}$ сходится; поскольку $oldsymbol{C}^{-1}$ существует, любой элемент можно представить единственным образом в виде $x = \sum_{k=0}^{\infty} b_k \varphi_k$.

Оператор C^n переводит f_k в e_k , поэтому

$$(e_k, e_m) = (C^n f_k, C^n f_m) = (C^{2n} f_k, f_m) = (g_k, f_m) = \delta_{km},$$

т. е. $\{e_k\}$ — ортонормированная система. Ясно, что $\{e_k\}$ — полная система. Пусть

$$x = \sum_{1}^{\infty} a_k f_k,$$

тогда

$$Cx = \sum_{1}^{\infty} a_{k} \varphi_{k}, \quad C^{n} x = \sum_{1}^{\infty} a_{k} e_{k},$$

$$\|C^{n-1} Cx\| = \left\{ \sum_{1}^{\infty} |a_{k}|^{2} \right\}^{1/s} \geqslant \frac{1}{M^{\frac{n-1}{n}}} \left\| \sum_{1}^{\infty} a_{k} \varphi_{k} \right\|,$$

т. е.

$$\left\| \sum_{1}^{\infty} a_k \varphi_k \right\| \leqslant M^{\frac{n-1}{n}} \left\{ \sum_{1}^{\infty} |a_k|^2 \right\}^{1/s}.$$

Далее,

$$\left\| \sum_{1}^{N} a_{k} (\varphi_{k} - f_{k}) \right\| = \left\| (E - C^{-1}) \sum_{1}^{N} a_{k} \varphi_{k} \right\| \leqslant \theta \left\| \sum_{1}^{N} a_{k} \varphi_{k} \right\|.$$

Таким образом, базис $\{\varphi_k\}$ удовлетворяет условиям теоремы. Положив $\varphi_k = f_k^{(1)}$ ($k=1,2,\ldots$), $M^{\frac{n-1}{n}} = M_1 < M$ и применив приведенное рассуждение, мы получим базис $\{f_k^{(2)}\}$ и константу $M_2 < M_1$. Повторив подобную конструкцию n-1 раз, придем к последовательности $\{f_k^{(n-1)}\}$, для которой

$$m_{n-1}\left\{\left.\sum_{1}^{\infty}|a_{k}|^{2}\right\}^{1/s} \leqslant \left\|\left.\sum_{1}^{\infty}a_{k}f_{k}^{(n-1)}\right\| \leqslant M_{n-1}\left\{\left.\sum_{1}^{\infty}|a_{k}|^{2}\right\}^{1/s}, \quad M_{n-1} < 2.\right\}$$

Tогда, построив, как и выше, оператор A, найдем, что

$$||A^{-1}|| < 2.$$

Положительный эрмитов оператор B такой, что $B^2 = A$, переводит элементы $f_k^{(n-1)}$ в e_k . $\{e_k\}$ — полная ортонормированная система. Далее,

 $||E - B^{-1}|| = 0 < 1$,

т. е.

$$\bigg\|\sum_1^N |a_k(f_k^{(n-1)}-e_k)\bigg\|\leqslant \theta\bigg\{\sum_1^N |a_k|^2\bigg\}^{^{1/2}}.$$

Теорема доказана.

Примечание. Из теоремы 1 просто следуют теоремы 4, 5, 6 работы Н. К. Бари (2) с помощью следующего очевидного факта: если последовательность f_1, f_2, f_3, \ldots — базис и $g_1, g_2, \ldots, g_n, f_{n+1}, f_{n+2}, \ldots$ — линейно независимая последовательность в пространстве Гильберта, то $g_1, g_2, \ldots, g_n, f_{n+1}, f_{n+2}, \ldots$ — базис.

Поступило 30 I 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

 1 R. Paley and N. Wiener, Fourier Transforms in the Complex Domain, N.-Y., 1934. 2 N. Bary, Mat. c6., 14, 1-2 (1944).