Г. П. АКИЛОВ

О РАСПРОСТРАНЕНИИ ЛИНЕЙНЫХ ОПЕРАЦИЙ

(Представлено академиком В. И. Смирновым 15 III 1947)

1. В настоящей заметке сообщаются результаты исследования некоторых проблем, относящихся к распространению линейных опе-

Проблема 1. Каким условиям должно удовлетворять линейное нормированное пространство X_0 (кратко, $X_0 \in B^-$, по поводу этих обозначений см.(2)), чтобы для всякого $X_0 \in B^-$, $X \supset X_0$ и $Y \in B^-$ и линейной операции U_0 , отображающей X_0 в Y, существовала такая линейная операция U, отображающая X в Y, что

$$U(x) = U_0(x)$$
 для $x \in X_0$; $||U|| = ||U_0||$. (1)

Проблема 2. Каким условиям должно удовлетворять пространство $Y\in B^-$, чтобы для всяких $X_0, X\in B, X_0\subset X$, и операции $U_0,$ отображающей X_0 в Y, существовала операция U, отображающая Xв У и удовлетворяющая условиям (1).

В дальнейшем, для краткости, будем говорить о пространствах, дающих решение проблемы 1, соответственно, проблемы 2, что они

обладают свойством (E_0), соответственно, свойством (E_u).

Если под проекцией пространства $X \in B^-$ на линейное замкнутое подпространство X_0 понимать, как обычно (см. (4)), линейную операцию P такую, что $P(X) = X_0$ и $P^2 = P$, то легко видеть (см., например, $(^4,^5)$), что для того, чтобы X_0 обладало свойством (E_0) , необходимо и достаточно, чтобы, каково бы ни было линейное нормированное пространство $X \supset X_0$, существовала бы проекция P пространства X на X_0 с ||P|| = 1.

2. Нормированное K-пространство X (линейное полуупорядоченное пространство, см. (1^{-3})) будем называть пространством типа B_+^+

 $(X \in B_1^+)$, если X одновременно типа B_1 и типа K_5 (см.(2)).

Определение 1. Пусть X — пространство типа B_1 . Характеристикой его будем называть число р, определенное так: $\frac{1}{\| \sup K \|}$, если K — единичная сфера пространства X — ограничена и supremum существует, и $\rho = 1$ во всех остальных случаях.

Если, кроме того, X типа B_1^+ , а $\rho=1$, то X будет называться пространством типа \mathfrak{M} $(X\in\mathfrak{M}).$

Tеорема 1. Пространства типа $\mathfrak M$ обладают свойством (E_0) . Теорема 2. Пространства типа \mathfrak{M} обладают свейством (E_{v}) . Обе теоремы непосредственно следуют из приводимой ниже теоремы Л. В. Канторовича (3).

Теорема Л. В. Канторовича. Если X и $X_0 \subset X$ —пространства типа $B^-, Y \in K_5^+$ и U_0 —операция класса H_b^0 (т. е. такая, что из $x_n \to x$ по норме вытекает $U_0(x_n) \to U(x)(0)$; подробнее см. (2)), отображающая X_0 в Y, то существует операция U тоже класса $H^{\circ}_{\mathfrak{B}_{\mathfrak{I}}}$ отображающая X в Y, совпадающая c U_0 на X_0 и имеющая ту же абстрактную норму (наименьшее $y_0 \in Y$, удовлетворяющее неравенству $|U(x)| \leqslant y_0 ||x||$, $x \in X$, см.(2)).

Для доказательства обеих теорем нужно еще заметить, что в случае заранее гарантированного наличия у операции $U_{
m 0}$ абстрактной

нормы условие $Y \in K_5^+$ может быть заменено на $Y \in K_5$.

В случае теоремы 1 надо применить теорему Л. В. Канторов и к тождественной операции в $X_{\mathbf{0}}$, в случае теоремы $2-\kappa$ самой операции $U_{\mathbf{0}}$.

Следствие*. Каковы бы ни были пространства типа $B^-\colon X$, $X_0\subset X$ и Y, существует пространство $\overline{Y}\supset Y$, зависящее только от Y, такое, что для всякой операции U_0 , отображающей X_0 в Y, найдется операция U, отображающая X в Y и удовлетворяющая условиям (1).

 $\mathring{\mathrm{B}}$ самом деле, в качестве Y достаточно взять пространство всех ограниченных функций на единичной сфере сопряженного к Y пространства, оно будет пространством типа \mathfrak{M} , если норму и упорядо-

ченность ввести обычным образом.

- 3. Условие теоремы 1 разбивается на два: а) $X_0 \in B_1^+$, b) $\rho = 1$. Оба эти условия существенны. Чтобы убедиться в существенности условия а), достаточно взять за X_0 пространство C непрерывных функций на [0,1] с обычной нормировкой и упорядоченностью. В качестве X следует взять M-пространство ограниченных функций на [0,1]. X_0 будет типа B_1 (но не B_1^+). Характеристика X_0 $\rho = 1$. Тем не менее, нетрудно доказать, что не существует проекции пространства X на X_0 с единичной нормой, и тем самым доказать, что X_0 не обладает свойством (E_0) .
- 4. Определение 2. Пространство $X \in B_1^+$ будем называть к в а з иравно мерно выпуклым, если существует $\eta > 0$ такое, что, каковы бы ни были положительные дизъюнктные элементы $x_1, x_2 \in X$ (элементы x и y называются дизъюнктными, если inf (|x|; |y|) = 0) с $||x_1|| = ||x_2|| = 1$, имеет место

$$||x_1 + x_2|| \leqslant 2 - \eta. \tag{2}$$

Числа $\eta > 0$, удовлетворяющие (2), будем называть допустимыми.

Замечание. Если $X \in B_1^+$ и равномерно выпукло, то X квазиравномерно выпукло. (Равномерно выпуклым называется линейное нормированное пространство X, обладающее свойством: каждому $\varepsilon > 0$ соответствует $\zeta(\varepsilon) > 0$ такое, что как только для двух элементов x $y \in X$ выполнено $\|x\| = \|y\| = 1$, $\|x - y\| > \varepsilon$, так $\|x - y\| < 2 - \zeta(\varepsilon)$, см. (8)).

В самом деле, если $x_1, x_2 \in X$ — дизъюнктные положительные эле-

менты с $||x_1|| = ||x_2|| = 1$, то

женного к X_0 пространства.

$$||x_1-x_2|| = |||x_1-x_2||| = |||x_1|+|x_2||| > |||x_1|| = ||x_1|| = 1,$$

поэтому в качестве у можно взять (1).

Теорема 3. Пусть X_0 — регулярное ** квази-равномерно выпуклое

^{*} Приведенное утверждение доказано впервые Fillips'ом (°) и после него Sobczyk'ом (7).
** Регулярность X_0 понимается в смысле совпадения X_0 и X_0^{**} — второго сопря-

пространство с характеристикой р. Если существует допустимое у такое, что

$$\frac{\eta}{(2-\eta)^3} \geq \rho,$$

то X_0 не обладает свойством (E_0) .

Доказательство теоремы 3 основывается на следующих леммах,

первая из которых принадлежит А. Г. Пинскеру.

Лемма 1. Пусть X—пространство типа B_1^+ . Если $x_0 \in X$ такой элемент, что для всякого положительного функционала f (т. е. такого, что f(x) > 0 для каждого x > 0) $f(x_0) > 0$, то $x_0 > 0$.

Пространство X^* — сопряженное к пространству $X \in B_1^+$ — само будет типа B_1^+ , если считать $f\!>\!0$ тогда и только тогда, когда f положителен (в определенном выше смысле) и отличен от нуля. Следуя далее, можно подобным же образом ввести частичную упорядоченность в X^{**} и т. д.

Следствие. Если X типа B_1^+ — регулярное пространство, то соответствие $F_x \longleftrightarrow x$ по формуле: $F_x(f) = f(x)$; $F_x \in X^{**}$, $f \in X^*$, $x \in X$ определяет не только метрическую эквивалентность пространств Х и Х **, но и их изоморфизм как полуупорядоченных пространств.

Лемма 2. Пусть X пространство типа B_1^+ с характеристикой ρ . Если $\rho' = \sup_{\|x\|=1} \inf_{\|f\|=1} f(x) \ x \in X$, $f \in X^*$, то $\rho = \rho'$.

 Π емма 3. Π усть X — регулярное (в смысле, указанном выше) квази-равномерно выпуклое пространство. Если f_1 и f_2 —положительные дизъюнктные функционалы , то $\|f_1\|+\|f_2\| < (2-\eta)\|f_1+f_2\|$, где п-любое допустимое число.

Следствие 1. Пространство Y, удовлетворяющее условиям тео-

ремы 3, не обладает свойством (E_{ν}) .

Будем называть вместе с Murray'ем (4) пространством $l_{p,n}$ совокупность всех комплексов вещественных чисел (x_1, \ldots, x_n) с

$$||(x_1,\ldots,x_n)|| = \left\{\sum_{i=1}^n |x_i|^p\right\}^{1/p}.$$

Следствие 2. Пространства L_p , l_p и $l_{p,n}$ при достаточно боль-

ших $n,\ 1 , не обладают свойством <math>(E_0)$.

В самом деле, L_p , l_p , l_p , n, 1 , становятся квази-равномерно выпуклыми пространствами, если ввести упорядоченность обычным образом (за η можно взять число $2-2^{1/p}$). В случае L_p и l_p характеристика $\rho = 0$, в случае $l_{p,n}$ характеристика $\rho_n \to 0$, когда $n \to \infty$.

В частности, если p=2, сформулированное для $l_{p,\,n}$ утверждение имеет место для $n \ge 12$.

Следствие 3. Если в пространстве X можно указать 13 линейно независимых элементов, то существует линейное замкнутое подпро-

странство $X_0 \subset X$, не обладающее свойством (E_0) .

Действительно, если X не унитарное пространство (унитарным называется пространство с нормой, удовлетворяющей условию: $\|x+y\|^2+\|x-y\|^2=2$ ($\|x\|^2+\|y\|^2$) для всякой пары элементов x,y), то это следует из результата Kakutani (5). Если же X — унитарное пространство, то линейная оболочка 13 линейно независимых элементов будет пространством $l_{2,13}$, которое, по предыдущему, не обладает свойством (E_0).

Замечание. Проблемы, подобные проблемам 1 и 2, получаются, если в условии (1) заменить равенство $\|U\| = \|U_0\|$ неравенством $\|U\| \leqslant N \|U_0\|$, где $N \geqslant 1$ — некоторое вещественное число, или вовсе отбросить его. Очевидно, пространства с характеристикой $\rho \geqslant 1/N$ дают решение проблем 1 и 2 в такой видоизмененной форме. Если N < 2, то несущественными изменениями в доказательстве может быть получена теорема, аналогичная теореме 3.

Поступило 15 III 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ L. Қаптогоvitch, Мат. сб., 2 (44): 1, 121 (1937). ² L. Қаптогоvitch, Мат. сб., 7 (49): 2, 209 (1940). ² Л. Канторович, ДАН, 1, 283 (1936). ⁴ F. Мигтау, Trans. Am. Math. Soc., 41, 138 (1937). ⁵ Sh. Қакитапі, Јар. Ј. Маth., 16, 93 (1939). ⁶ R. Fillips, Trans. Am. Math. Soc., 55, 153 (1944). ⁷ A. Sobczyk, Trans. Am. Math. Soc., 55, 153 (1944). ⁸ J. Clarkson, Trans. Am. Math. Soc., 40, 396 (1936).