Доклады Академии Наук СССР 1947. Том LVII, № 3

MATEMATHKA

Ю. С. БОГДАНОВ

О НОРМАЛЬНЫХ СИСТЕМАХ ЛЯПУНОВА

(Представлено академиком В. И. Смирновым 27 I 1947)

Характеристичным числом функции f(t) (х. ч. f(t)) называется точная нижняя граница чисел λ , для которых

$$\overline{\lim_{t\to\infty}}\,e^{\lambda t}f(t)=+\infty.$$

Если множество { \lambda \} неограничено снизу, то полагают

$$X. q. f(t) = -\infty,$$

и, наоборот, если для любого λ

$$\overline{\lim_{t\to+\infty}}\,e^{\lambda t}f(t)<+\infty,$$

то считают

$$x. q. f(t) = +\infty.$$

Характеристичным числом совокупности функций называется наименьшее из характеристичных чисел функций, входящих в эту совокупность.

Рассмотрим систему линейных дифференциальных уравнений

$$\frac{dX}{dt} = XP. \tag{1}$$

Если элементы матрицы $P \stackrel{\cdot}{-} \{P\}_{ik}$ непрерывны и ограничены в промежутке (t_0, ∞) , то характеристическое число всякого, отличного от тривиального, решения

$$x = (x_1, x_2, \ldots, x_n),$$

где n — порядок матрицы X, всегда конечно.

Нормальной системой решений системы (1) называется фундаментальная система решений такого свойства, что всякая линейная комбинация всех входящих в ее состав решений будет обладать характеристичным числом, равным характеристическому числу совокупности комбинируемых решений. Такая система всегда существует.

1. Пусть X_1 — нормальная система решений системы (1). Всякая другая фундаментальная система решений системы (1) X_2 может быть получена умножением X_1 на некоторую матрицу C

$$X_2 = CX_1$$
, $C = \text{const}$, $D(C) \neq 0$. (1,1)

В этом параграфе мы установим, какими свойствами должна обладать матрица C, чтобы X_2 была снова нормальной системой решений.

Обозначим через λ_i характеристичное число i-го решения из нормальной системы решений X_1

$$\lambda_i = X$$
. Y . $X_i^{(1)} = X$. Y . $(x_{i1}^{(1)}, x_{i2}^{(2)}, \dots, x_{in}^{(n)})$

и через λ_i' — характеристичное число i-го решения из X_2 .

Лемма. Для того чтобы фундаментальная система решений была нормальной системой решений, необходимо и достаточно совпадение множеств

$$\{\lambda_i\}_{i=1,2,\ldots,n}$$
 u $\{\lambda_i'\}_{i=1,2,\ldots,n}$

Ляпунов (1) доказал, что необходимым и достаточным признаком нормальной системы является достижение $\max_{i=1}^{n} \lambda_{i}$.

Отсюда и из определения нормальной системы решений и следует лемма.

Пусть n_i — число решений нормальной системы решений системы (1) с характеристичными числами, не меньшими, чем λ_i . Не умаляя общности, можно считать, что матрицы X_1 и X_2 записаны так, что

$$\lambda_1 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_n, \quad \lambda_1' \geqslant \lambda_2' \geqslant \ldots \geqslant \lambda_n'.$$

Условившись о таком порядке записи, формулируем теорему.

Tеорема. Для того чтобы матрица C переводила нормальную систему решений X_1 в нормальную же систему решений X_2 , необходимо и достаточно

1.
$$D(C) \neq 0$$
.
2. $\{C\}_{ik} = C_{ik} = 0$ dar $k > n_i$. (1,2)

Доказательство. Достаточность.

$$x_i^{(2)} = c_{i1} x_1^{(1)} + \ldots + c_{in} x_i^{(1)} + \ldots + c_{in} x_{n_i}^{(1)}$$

Среди коэффициентов $c_{in_j+1}, \ldots, c_{ii}, \ldots, c_{in_l}$ $(\lambda_j > \lambda_i, \lambda_{j+1} = \lambda_l)$ имеются отличные от 0 (иначе D(C) = 0).

Так как X — нормальная система решений и $\lambda_1 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_n$, то $\lambda_i' = \lambda_i$. По лемме следует: X_2 — нормальная система решений $X_1 \geqslant \ldots \geqslant \lambda_n$ необходимость.

$$x_i^{(2)} = c_{i1} x_1^{(1)} + c_{i2} x_2^{(1)} + \dots + c_{in} x_n^{(1)}$$

По лемме должно быть (при нашем порядке записи)

$$\lambda_i = x$$
. $x_i^{(2)} = \lambda_i$.

Вследствие этого, так как X_1 — нормальная система решений, $c_{\imath k} = 0$ для $k > n_i$.

Теорема доказана.

Итак, из всей группы (относительно умножения в обычном для матриц смысле) матриц C ($D(C) \neq 0$) — $\mathfrak E$, преобразующих одну фундаментальную систему решений системы (1) в другую фундаментальную систему решений, выделяется подгруппа матриц $\mathfrak E$ вида (1,2), переводящих нормальную систему решений снова в нормальную систему решений.

2. Матрица начальных значений фундаментальной системы решений

уравнения (1).

$$X_0 = X |_{t=t_0} \tag{2.1}$$

содержит n^2 параметров. Установим вид матрицы X_0 в том случае, когда X — нормальная система решений. Пусть Y — некоторая нормальная система решений системы (1) с

матрицей начальных значений У

$$Y_0 = Y |_{t=t_0}, \quad D(Y_0) \neq 0.$$

Тогда всякая другая нормальная система решений системы (1), согласно теореме § 1, имеет вид

$$X = CY$$
, (2,2)

где G удовлетворяет условию (1,2).

Положив $t=t_0$, имеем

$$X_0 = CY_0. \tag{2.3}$$

Из этого соотношения следует, прежде всего, что матрица начальных значений X_0 содержит лишь следующее число параметров: $n^2+m_1^2+\ldots+m_{k-1}^2-m_1m_2-\ldots-m_{k-1}m_k$; при этом считаем, что

$$\lambda_1 = \lambda_2 = \ldots = \lambda_{m_1} > \lambda_{m_1+1} = \ldots = \lambda_{m_2} > \lambda_{m_1+1} \ldots \lambda_{m_k} (=\lambda_n).$$

В частности, если все характеристичные числа системы (1) различны, то число параметров будет $\frac{\hat{n}(n+1)}{n}$

Из (2,3) следует, что в n-мерном пространстве $\{(x_1,\dots,x_n)\}$ все начальные при $t\!=\!t_{\mathbf{0}}$ значения любого решения нормальной системы решений, обладающего характеристичным числом λ_{m_i+p} , лежат в некоторой, для данной системы (1) и значения $t_{\scriptscriptstyle 0}$ определенной, m_{j+1} -мерной гиперплоскости, проходящей через начало.

Полученная таким образом совокупность глперплоскостей сплошь заполняется начальными значениями решений из нормальной системы решений системы (1). Взяв n линейно независимых точек так, что

$$m_1$$
 точек расположены в соответственной m_1 -мерной гиперплоскости $m_2 - m_1$ « « « м m_2 « « « « « « « « «

и так, что определитель, им соответствующий, отличен от нуля, мы получаем нормальную систему решений, начальные значения которой и будут выбранные точки. Всякая из указанных выше гиперплоскостей содержит предыдущие.

В некоторых случаях положение рассматриваемой совокупности гиперплоскостей не зависит от $t_{
m o}$. Так будет, очевидно, в случае, когда P=const. Это следует из общего вида нормальной системы

решений

$$X = Ce^{It} S$$
.

где $I = SPS^{-1}$ — канонический вид матрицы P, записанный так, что $\operatorname{Re}(l_i)$, $\leqslant \operatorname{Re}(l_j)$, $i < j, l_i, l_j$ — характеристические числа P, а C выбрано согласно условию (1,2).

В общем же случае при переходе от $t_{\mathbf{0}}$ к $t_{\mathbf{1}} \neq t_{\mathbf{0}}$ положение гиперплоскостей может изменяться, хотя размерности их остаются прежними, равно как и факт прохождения через начало.

Ленинградский государственный университет

Поступило 27 I 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. М. Ляпунов, Общая задача об устойчивости движения, 1945.