Ю. А. КЛЯЧКО и Е. И. БЛЕЩУНОВА

О МЕХАНИЗМЕ РАСТВОРЕНИЯ ЦИНКА В ЩЕЛОЧИ

(Представлено академиком Э. В. Брицке 10 XI 1946)

Механизм растворения цинка в щелочах до настоящего времени мало изучен, хотя уже давно было установлено, что цинк растворяется в 1 º/o NaOH при доступе воздуха вне зависимости от присутствия двуокиси углерода, причем растворение становится более интенсивным при нагревании (1, 2). Процесс сопровождается выделением водорода, и растворение усиливается в присутствии окислителей, в частности гипохлорита натрия (3). Так как окись цинка растворяется в щелочах с образованием комплексных ионов, то цинк вытесняет водород из растворов щелочей без самоторможения коррозии (4).

Разрушение цинка в присутствии кислорода наступает при рН

около 11,5, но становится быстрым при pH=12,5 (5, 6).

Действию щелочей на алюминий было уделено больше внимания, хотя гораздо меньше, чем действию кислот на тот же металл. Имеются две точки зрения на механизм растворения алюминия в щело-

чах, которые можно перенести по аналогии и на цинк.

1. Химическая точка зрения Центнершвера (7), основанная на обнаруженной этим автором независимости скорости растворения алюминия в щелочах от степени чистоты металла; по Центнершверу механизм растворения чисто окислительный и выражается реак-:имкиц

$$Al + O''$$
 (из OH' -иона) \rightarrow $AlO + 3e$, $AlO + O'' \rightarrow AlO'_2$, $Al + OH' + HOH \rightarrow AlO'_2 + 3H$.

Окислителем при этом служит, видимо, ион кислорода из гидроксильного иона, чем и объясняется установленная Центнершвером пропорциональность между величинами скорости реакции и $\sqrt{c_{\text{OH}'}}$. В обоснование написанных реакций Центнершвер сослался даже на высокое сродство кислорода к алюминию!

2. Электрохимическая точка зрения Шикорра—Страуманиса (8, 9) согласно которой растворимость металла в щелочи определяется деятельностью местных элементов, но скорость растворения технически» чистого металла контролируется химической реакцией, образованной на аноде гидроокиси алюминия с избытком щелочи:

$$Al(OH)_3 + OH' \rightarrow AlO'_2 + 2H_2O.$$

Катодный процесс, по Страуманису, состоит в ионизации и выделении водорода воды под влиянием электрического поля:

$$3H_2O \rightarrow 3H^* + 3OH'$$
,
 $3H^* + 3e \rightarrow 3H$,
 $2H \rightarrow H_2$.

В отношении гипотезы Центнершвера необходимо отметить, что совершенно невозможно считать ион кислорода окислителем; в гипотезе Страуманиса представляется невероятной ионизация воды под

влиянием электрического поля местного элемента.

Для выяснения действительного механизма растворения цинка (и алюминия) в щелочных растворах нам казалось необходимым выяснить роль воды и щелочи в этом процессе. Вначале было изучено поведение цинка в водных растворах щелочи. Применялись металлический цинк и едкий натр марки Кальбаум. Навески цинка в виде кусочков ~ 0.3 г вводились в водные растворы NaOH разных концентраций и через 14 суток количество перешедшего в раствор цинка определялось титрометрически по ртутно-родановому методу (10). Для

Таблица 1

Растворение цинка в водных растворах

грубой оценки растворимости во время опыта наблюдалось количество выделяющегося водорода. Температура опытов $+15^{\circ}$ С. Результаты представлены в табл. 1.

Далее было проведено исследование действия на цинк 10; 5; 3 и $0.8\,^{\circ}/_{0}$ раствора NaOH в абсолютированном этиловом спирте (99,7 $^{\circ}/_{0}$).

Таблица 2

Растворение цинка в спиртовой щелочи в присутствии перекиси водорода

№ опыта	Навес- ка цинка в г	Растворитель	Наблюдения	Содержание цинка в растворе через 15 суток в $^0/_0$ к навеске
1	0,2	20 мл 10% NaOH в С ₂ H ₃ OH + +5 мл H ₂ O ₂ (28%)	Образовался студенистый осадок, который через 20 мин. исчез	49,4
2	0,2	20 мл NaOH — 5 мл H ₂ O ₂ (2,8%) 20 мл NaOH — 1 мл H ₂ O ₂ (2,8%) 20 мл NaOH — 5 мл H ₂ O ₂ (0,28%)	На дне сосуда гель	47,6 31,5
3	0,2	20 мл NaOH + 1 мл H ₂ O ₂ (2,8%)	Опалесцирующий раствор Слабо опалесцирующий	12,8
4	0,2	20 MJ NaOn + 5 MJ 112O2 (0,28/0)	раствор	1.0
5	0,2	20 мл NaOH + 1 мл H ₂ O ₂ (0,28%)	Бесцветный раствор	14,0

Проведенные через 7 и 12 суток после начала опытов химические анализы показали полное отсутствие цинка во всех растворах.

Вслед за этим было определено то минимальное содержание воды в спиртовой щелочи, от которого начинается растворение цинка. Путем добавления водных растворов NaOH к спиртовым был получен ряд растворов с одинаковым во всех случаях содержанием NaOH

(10 %) при содержании воды: 1; 5; 10; 18; 30 и 45 % по весу. В эти растворы вводился цинк; наблюдение велось за выделением водорода по микроманометру. Цинк растворялся только в последнем из перечисленных растворов. Растворение начиналось через 15 мин., и через

Таблица 3

Растворение цинка в спиртовом и водно-спиртовом растворах 10°/₀ NaOH в струе кислорода

Раствор	Навес- ка ме- талла в г	Содержание цинка в раство- ре в ⁰ / ₀ к навеске через		
		8 час.	18 час.	45 час.
Спиртовый ,	1,0	0,0		28,9 (на стенках белый крис- талл. оса- док)
Водно-спиртовый $(30\% \ H_2O)$	1,0	_	22,3	_

40 час. в растворе находилось $22,8\,^{\rm o}/_{\rm o}$ цинка. Следовательно, необходимо наличие около 70 мол. процентов воды в спиртовой щелочи,

чтобы цинк в ней растворялся.

В следующих опытах цинк подвергался действию спиртовой щелочи в присутствии окисляющих агентов — перекиси водорода и газообразного кислорода. В табл. 2 приведены результаты воздействия на цинк 10% раствора NaOH в абсолютированном спирте в присутствии

различных количеств Н₂О₂.

В табл. 3 приведены данные о растворении цинка в спиртовом и водно-спиртовом растворах $10\,^{\rm o}/_{\rm o}$ NaOH при продувании кислорода. Осушенный кислород из баллона непрерывно пропускался со скоростью около 1 л/мин. через склянку Дрекселя, содержавшую цинк в щелочном растворе, таким образом, что пузырьки газа касались по-

верхности металла.

Оценка результатов и выводы. Из данных табл. 2 и 3 следует, что цинк может растворяться в щелочи в отсутствие воды, если в систему вводится окислитель. Механизм растворения при этом, конечно, химический. Вместо обычного окислителя можно вводить в спиртовые растворы щелочи, сами по себе не действующие на цинк, воду, но при этом требуется не менее 70 мол. процентов воды.

Отсюда вытекает следующая схема механизма растворения цинка в

водных растворах щелочей:

1) Щелочь способна растворять только окисную пленку на поверхности металла по реакции:

2) Металл с обнаженной поверхностью вступает в реакцию с водой, которая его окисляет:

$$Zn + H_2O \rightarrow ZnO + H_2$$
.

3) Щелочь снова растворяет образовавшуюся окись и т. д.

Чередование процессов окисления металла водой и комплексообразования окиси со щелочью составляет механизм растворения цинка

и, предположительно, алюминия. Вода, естественно, может быть заменена другим окислителем, причем процесс в этом случае идет без выделения водорода. Высокий молекулярный процент воды, необходимый для реакции растворения металла в щелочи, вероятно, свидетельствует о многообразии функций воды, прежде всего, о ее гидратирующей функции.

Все основные особенности процессов растворения цинка (и алюминия) в щелочах могут быть объяснены на основе предлагаемого ме-

ханизма без привлечения электрохимической трактовки.

Поступило 10 XI 1946

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ H. Fleck, Chem. Zbl., 1626 (1888). ² Wagner, Dinglers Polytechn. J., 221, 259 (1876). ³ Sadtler, Electrochem. Z., 10, I (1903—04). ⁴ Эванс, Коррозия, пассивность и защита металлов, 1941, стр. 349. ⁵ S. C. Britton, J. Soc. Chem. Ind., 55, 19 (1936). ⁶ R. B. Mears, Chem. Ind., 14, 510 (1936). ⁷ M. Centnerszwer, Eicher, Z. Elektrochem., 37, 598 (1931). ⁸ G. Schikorr, Z. Elektrochem., 37, 610 (1931). ⁹ M. Страуманис, Тр. второй конференции по коррозии металлов, 2, 3 (1943). ¹⁰ Методы анализа металлов, ВИАМ, 1944, Ртутно-родановый метод определения Zn.