Доклады Академии Наук СССР 1947. Том LVI, № 6

МЕХАНИКА

Д. И. ШЕРМАН

О НЕКОТОРЫХ СЛУЧАЯХ ОБЩЕЙ ЗАДАЧИ ТЕОРИИ УСТАНОВИВШИХСЯ КОЛЕБАНИЙ

(Представлено академиком Л. С. Лейбензоном 23 XI 1946)

§ 1. Пусть в плоскости z=x+iy задана конечная односвязная область S, ограниченная замкнутой кривой L, координаты точек которой достаточное число раз дифференцируемы по дуге s. Будем считать обход кривой совершающимся против движения часовой стрелки и нормаль к ней направим изнутри S во вне. За начало координат выберем точку, лежащую в S.

Предположим, что требуется определить функцию $u(x, y; \lambda)$, непрерывную в замкнутой области S, вместе со своими частными производными по переменным x и y до m-го порядка (включительно) почти для всех значений параметра λ , удовлетворяющую в S дифференциальному уравнению

$$\Delta u - \lambda^2 u = 0 \tag{1}$$

и на *L* предельному равенству

$$\sum_{k=0}^{m} \sum_{j=0}^{k} a_{kj}(s) \frac{\partial^{k} u}{\partial x^{k-j} \partial y^{j}} = f(s),$$
 (2)

где Δ — оператор Лапласа, λ — вещественный параметр и $a_{kj}(s)$, f(s) — известные функции; будем считать, что $a_{mj}(s)$ удовлетворяют условию Липшица и неравенству

$$|g(s)| = |g_1(s) + ig_2(s)| = \left| \sum_{j=0}^{m} (i)^j a_{mj} \right| > 0,$$
 (3)

где g_1 и g_2 — вещественные величины. Относительно же остальных коэффициентов $a_{kj}(s)$ и свободного члена f(s) ограничимся предположением, что они непрерывны на L.

Считая, для удобства, |g(s)|=1, положим $g_1=\cos\omega(s)$ и $g_2=\sin\omega(s)$. Возможны два случая: при обходе L в положительном направлении функция $\omega(s)$ получает приращение, равное либо $-2\pi n$, либо $2\pi n$, где n — целое положительное число или нуль. В настоящей статье мы рассмотрим первый случай (включая в него n=0).

Обозначим через $\chi^*(z)$ функцию, регулярную вне S и обращающуюся в постоянную на бесконечности, вещественная часть которой равна $\omega(s)+n\theta$ на L, где θ — полярный угол. При этом, полагая $\operatorname{Im}\chi^*(\infty)=0$, допустим для определенности, что $\operatorname{sin}\operatorname{Re}\chi^*(\infty)\neq 0$, где Re и Im , соответственно, символы вещественной и мнимой части.

§ 2. Покажем, что любая функция $u(x, y; \lambda)$, удовлетворяющая уравнению (1) и обладающая указанными свойствами, почти для всех λ представима в виде:

$$u(x, y; \lambda) = \operatorname{Re}\left[\frac{1}{\pi i} \int_{I_{k}} v(s, \lambda) \frac{Q}{g} dt + \sum_{k=0}^{m+n} c_{k}(\lambda) e^{ik\theta} I_{k}(\lambda \rho)\right], \tag{4}$$

где введены обозначения:

$$Q = \left(\frac{2}{\lambda^2}\right)^{m-1} \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)^{m-1} \left\{R_0(\lambda r) - \ln\frac{t-z}{t} I_0(\lambda r)\right\},$$

$$R_0(\lambda r) = K_0(\lambda r) + \left(C + \ln\frac{\lambda r}{2}\right) I_0(\lambda r),$$
(5)

причем плотность $v(s,\lambda)$ вещественна, $t=\xi+i\eta-$ аффикс точки L и под $\ln\frac{t-z}{z}$ понимается ветвь, обращающаяся в нуль при z=0; далее, I_k и K_0 — функции Бесселя первого и второго рода от мнимого аргумента, C — постоянная Эйлера, $c_k(\lambda)$ — некоторые функции от λ , из них $c_0(\lambda)$ и $c_{m+n}(\lambda)$ — вещественные *, и, наконец, $r=\sqrt{(x-\xi)^2+(y-\eta)^2}$ и $\rho=\sqrt{x^2+y^2}$. Легко убедиться, что

$$Q = \frac{(-1)^m}{(m-1)!} (t-z)^{m-1} \ln \frac{t-z}{z} + \dots,$$
 (6)

где через многоточие обозначены слагаемые, остающиеся абсолютно интегрируемыми или непрерывными вместе со своими частными про- изводными m-го порядка по координатам x и y, когда z стремится к точке, лежащей на L.

Рассмотрим вспомогательную задачу, заключающуюся в отыскании решения $u^*(x,y;\lambda)$ уравнения (1) при условии на L:

$$\sum_{i=0}^{m} a_{mj} \frac{\partial^{m} u^{\bullet}}{\partial x^{m-j} \partial y^{j}} = f(s).$$
 (7)

Будем искать $u^*(x, y; \lambda)$ в виде выражения

$$u^* = \operatorname{Re}\left\{\frac{1}{\pi i} \int_{L} v^*(s, \lambda) \frac{Q}{g} dt - \sum_{k=m}^{m+n} \left(\frac{2}{\lambda}\right)^k a_{k-m}(\lambda) e^{ik\theta} I_k(\lambda \rho)\right\}, \tag{8}$$

положив в нем **

$$a_{k}(\lambda) = \frac{k!}{\pi i} \int_{L} \frac{v^{*}(s, \lambda)}{(a+ib)} \frac{dt}{t^{k+1}} \quad (k=0; 1, \dots, n-1),$$

$$a_{n}(\lambda) = \operatorname{Re} \frac{n!}{\pi i} \int_{L} \frac{v^{*}(s, \lambda) dt}{(a+ib)t^{n+1}},$$
(9)

причем $\nu^*(s,\lambda)$ — подлежащая определению новая вещественная неизвестная.

^{*} Коэффициент $c_{m+n}(\lambda)$ следует считать мнимым, если sin Re $\chi^*(\infty)=0$. ** Если sin Re $\chi^*(\infty)=0$, то в формуле для $a_n(\lambda)$ следует вместо вещественной части функционала взять умноженную на i его мнимую часть.

Взяв в (8) параметр $\lambda = 0$ и введя обозначения $v_0(s) = v^*(s, 0)$, $a_{k0} = a_k(0)$, получим при ограниченной $v_0(s)$ гармоническую в области S функцию

$$u_0(x, y) = \operatorname{Re}\left\{\frac{(-1)^m}{(m-1)! \pi i} \int_L \frac{v_0(s)}{(a+ib)} (t-z)^{m-1} \ln \frac{t-z}{t} dt - \sum_{k=m}^{m+n} \frac{a_{k-m,0}}{k!} z^k\right\}.$$
(10)

В силу (9) легко убеждаемся, что регулярная в S функция $\varphi_0(z) = u_0(x,y) + iv_0(x,y)$ (где v_0 — сопряженная с u_0) удовлетворяет условиям

$$\varphi_0^{(k)}(0) = 0$$
, $\operatorname{Re} \varphi_0^{(m+n)}(0) = 0$ $(k=m, \dots, m+n-1)$. (11)

Отметим, что выбор самого функционала a_n в (9) сделан также в предположении, что $\sin \text{Re}\,\chi\,(0) \neq 0$, где $\chi\,(z)$ — регулярная в S функ-

щия, вещественная часть которой на L равна $\omega(s)+n\theta$.

Примечание. Если sin Re χ (0)=0 (при условии sin Re χ^{\bullet} (∞) \neq 0), то, взяв в S точку z_0 , в которой Im $(z^n e^{-i\chi})^{(n)} \neq 0$, заменим в знаменателе подинтегральной функции для a_n в равенстве (9) множитель t^{n+1} на $(t-z_0)^{n+1*}$, оставляя все предыдущие функционалы без изменения.

§ 3. Подставив теперь выражение (8) для $u^*(x, y; \lambda)$ в граничное равенство (7), получим, в чем нетрудно убедиться, имея в виду разложение (6), для определения $v^*(s, \lambda)$ интегральное уравнение Фредгольма, ядро которого является целой функцией параметра λ . Рассмотрим соответствующее однородное уравнение (при f(s)=0), положив в нем λ =0 и заменив $v^*(s, \lambda)$ на $v_0(s)$. Очевидно, оно может быть получено из (однородного же) условия (7) с помощью представления (10).

Преобразовав это условие к виду

Re
$$\{e^{i\chi(t)} t^{-n} \varphi_0^{(m)}(t)\} = 0$$
,

заключаем на основании (11), что функция $\varphi_0(z)$ может быть лишь полиномом (m-1)-й степени. Рассуждая далее, как в статье (1), найдем, что $v_0(s) = 0$.

Таким образом, $\lambda = 0$ является обыкновенной точкой резольвенты интегрального уравнения, к которому мы свели вспомогательную

Отсюда вытекает (2), что оно разрешимо почти для всех зна-

чений параметра λ.

С другой стороны, выразив $u^*(x, y; \lambda)$ через гармоническую функцию $p(x, y; \lambda)$ из уравнения

$$p = u^* + \lambda^2 \int_S u^* G dS, \qquad (12)$$

где G — функция Грина для области S, получим из (7) для $p(x,y;\lambda)$ задачу Римана, разрешимую, в силу только что сказанного, почти для всех λ . Поэтому (см. 1 , 3 , 4) однородная задача при условии (7) для u^* (также почти для всех λ) имеет 2(m+n) и только 2(m+n) нетривиальных решений. Обозначим их через $u_{kj}(x,y;\lambda)$ ($k=0,1,\ldots,m+n;\ j=1,2$), причем условимся, что при k=0

^{*} Точка z_0 всегда может быть выбрана таким образом. Действительно, допуская противное, найдем, что $\omega(s)+n\theta=0$ на L; но тогда $\chi^*(z)=0$, что, по условию, невозможно. Вместо последней из формул (11) будем при этом иметь $\operatorname{Re} \varphi_0^{-(m+n)}(z_0)=0$.

или m+n индекс j может принимать лишь значение, равное 1. Эти решения мы найдем следующим образом. Положим

$$u_{kj}(x, y; \lambda) = u_{kj}^*(x, y; \lambda) + \text{Re } \varepsilon_j (2/\lambda)^k b_k e^{jk\theta} I_k(\lambda \rho),$$

 $k = 0, 1, ..., m + n; j = 1, 2,$
(13)

где под u_{kj}^* будем понимать выражение (8) с плотностью v_{kj}^* ; b_k — некоторые произвольно фиксированные, отличные от нуля (и не зависящие от λ) вещественные постоянные, $\varepsilon_1 = 1$, $\varepsilon_2 = i$. Затем определим v_{kj}^* из интегрального уравнения, которое получим после подстановки в однородное условие (7) вместо u^* выражения (13) для u_{kj} . Ни одна из функций u_{kj} , найденных таким образом (и, очевидно, мероморфных от λ), не равна тождественно нулю. В самом деле, допустив противное относительно какой-либо из u_{kj} и положив в ней * $\lambda = 0$, $v_{kj}^{(0)}(s) = v_{kj}(s, 0)$, получим

$$\operatorname{Re}\left\{\frac{(-1)^{m}}{(m-1)! \pi t} \int_{L} v_{kj}^{(0)}(s) \frac{(t-z)^{m-1}}{(a+ib)} 1 \right. \frac{t-z}{t} dt - \sum_{l=m}^{m+n} \frac{a_{l-m,0}}{l!} z^{l} + \varepsilon_{j} b_{k} z^{k} \right\} = 0,$$

где a_{l-m} , о — функционалы (9) с плотностью $v_{kj}^{(0)}$ (s). Но отсюда следует, что (1) $v_{kj}^{(0)}$ =0, b_k =0, а это невозможно, так как, по условию, b_k =0.

Так же легко установить, что все u_{kj} линейно независимы между собою. Подставим теперь в равенство (7) вместо f (s) предельное значе-

ние выражения

$$\sum_{j=0}^{m} a_{mj} \frac{\partial^{m} u}{\partial x^{m-j} \partial y^{j}},$$

где $u(x, y; \lambda)$ — заданная функция, удовлетворяющая условиям, указанным в начале § 2. Тогда, взяв $u^*(x, y; \lambda)$ попрежнему в форме (8) и определив $v^*(s, \lambda)$ из интегрального уравнения, которое мы при этом получим, будем иметь, в силу сказанного:

$$u(x, y; \lambda) = u^*(x, y; \lambda) + \sum_{j=1}^{2} \sum_{k=0}^{m+n} c_{kj}(\lambda) u_{kj}(x, y; \lambda),$$
 (14)

где $c_{kj}(\lambda)$ — некоторые функции от λ . Отсюда, введя обозначение

$$v(s,\lambda) = v^*(s,\lambda) + \sum_{j=1}^{2} \sum_{k=0}^{m+n} c_{kj}(\lambda) v_{kj}(s,\lambda)$$

$$\tag{15}$$

и собрав слагаемые, содержащие a_k , c_{kj} и b_k , придем к требуемому

представлению (4).

Наконец, возвращаясь к исходной задаче, сформулированной в начале статьи, и подставив выражение (4) для искомой функции $u(x, y; \lambda)$ в граничное условие (2), мы непосредственно сведем задачу к эквивалентному ей, на основании вышеизложенного, интегральному уравнению Фредгольма.

Институт механики Академии Наук СССР

Поступило 23 XI 1946

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Д. И. Шерман, Изв. АН СССР, сер. математ., **10** (1946). ² Ј. Татагкіп, Апп. Матетат., **28**, No. 2 (1927). ³ Ф. Д. Гахов, Изв. Казанск. физ.-матем. об-ва, **10**, сер. 3 (1938). ⁴ И. Н. Векуа, Тр. Тбилисск. математ. ин-та, **11** (1932).

^{*} На основании сказанного выше $\lambda=0$ является обыкновенной точкой для $\nu_{kj}^*(s,\lambda).$