МИНЕРАЛОГИЯ

Е. Е. КОСТЫЛЕВА и М. Е. КАЗАКОВА

ОРТИТ МЕСТОРОЖДЕНИЯ БЕКТАУ-АТА В КАЗАХСТАНЕ

(Представлено академиком Д. С. Белянкиным 18 XI 1946)

Описываемый ниже минерал был передан нам для изучения О. С. Полквой как неизвестный редкоземельный минерал из грани-

тов Бектау-Ата в Казахстане.

В отчете за 1939 г. О. С. Полквой и Фельдман "Особенности рудоносных гранитов Северо-Западного Прибалхашья" имеются указания, что в крупнозернистых розовых гранитах, слагающих Бектауатинский массив, очень обычны мелкие (размером в несколько сантиметров) пегматитовые обособления, в которых наблюдаются выделения кристаллов лимонитизированного пирита и черного редкоземельного минерала, обладающего лучистым строением.

Переданный нам для изучения материал состоял из нескольких мелких штуфов пегматитовых обособлений в граните. Приложенный к штуфам спектроскопический анализ С. А. Боровика указывал на высокое содержание в черном минерале редких земель церовой

группы.

Парагенезис минерала в нашем материале: полевой шпат в идиоморфных выделениях, кальцит неправильными зернами в полевом шпате, кварц, редкие листочки биотита и включения флюорита. Описываемый минерал врастает в полевой шпат и выполняет в нем радиально-лучистыми агрегатами пустотки. Особенно характерно для минерала образование радиально-лучистых агрегатов, очень напоминающих лучистые агрегаты турмалина, вследствие чего он, по первому впечатлению, легко может быть принят за турмалин. Лишь в одном случае в пустотах был обнаружен неполно развитый кристалл с удлиненно пластинчатым габитусом и единичными гранями.

Цвет минерала смоляно-черный, блеск в изломе жирный, излом неровный; черта светлобурая, твердость от 5 до 6. Перед паяльной трубкой оплавляется легко в черный шлак, не вспучиваясь. В кисло-

тах растворяется. Уд. вес 4,16 (пикнометрический).

По данным О. С. Полквой и нашим, минерал в шлифе образует веерообразные агрегаты, имеет коричнево-бурую зональную окраску и резкий плеохроизм от светло-оливково-зеленого цвета или почти бесцветного по N_p до темнокоричнево-бурого по N_g . Схема абсорбции, как у биотита; минерал двуосный, оптически отрицательный, наблюдается дисперсия оптических осей. Спайность неясная, выражена в двух направлениях под углом 84°. Показатели преломления, определенные иммерсионным методом: $N_g = 1,758$; $N_p = 1,724$, $N_g = N_p = 0,034$.

Ниже приводится полный химический анализ (см. таблицу) этого минерала, произведенный одним из авторов (М. Е. Казаковой), и

краткий метод анализа.

После сплавления навески 0,5 г минерала с 5-кратным количеством Na₂ CO₃ и разложения сплава в соляной кислоте SiO₃ выделялась обычным путем. В фильтрате полуторные окислы осаждались аммиаком, осадок после прокаливания сплавлялся с пиросульфатом калия

Анализ ортита Бектау-Ата

	0/0	Молеку- лярное отношение	Атомное отношение		Кратные отношения	Количе- ство кис- лорода
N 10 10 10 10 10 10 10 10 10 10 10 10 10						
SiO ₂	30,47	5 078	5 070 41	5 119	2,93	10 156
TiO ₂	1,39	174	174			348
Al ₂ O ₃	12,43 7,29 10,93 0,50	1 219 457 1 521 124	$ \begin{array}{c} 2 438 \\ 914 \\ 1 521 \\ 124 \end{array} $ $ \begin{array}{c} 1 645 \end{array} $	5 130	2,94	3 657 1 371 1 521 124
M_{0} M_{0	1,88 9,69 12,70 12,06	255 1 730 386 370	$ \begin{array}{c} 255 \\ 1730 \\ 772 \\ 740 \end{array} $ 1512	3 497	2,00	255 1 730 1 158
) ₂ O ₃	0,22 0,10 0,29	<u>-</u> 16	32		BE STOLE	1 110 - 16
0	99,95	VERY 1 HAVE	21 446	21 446	12,2	21 446

и сплав растворялся в 6% щавелевой кислоте. После суточного стоя-

ния выпавшие редкие земли отфильтровывались и промывались. В фильтрате от редких земель Fe, Ti и Nb осаждались $6^{0}/_{0}$ раствором купферона, осадок после прокаливания сплавлялся с пиросульфатом калия, сплав растворялся в 50/0 винной кислоте, после чего в растворе железо осаждалось сернистым аммонием. В фильтрате от сернистого железа, подкисленного серной кислотой (до 10% содержания серной кислоты), сероводород удалялся нагреванием раствора, и титан осаждался купфероном. После отделения титана купферон и щавелевая кислота разрушались азотной кислотой, и алюминий осаждался аммиаком.

Сумма редких земель определялась из отдельной навески разложением с HF и H₂SO₄, остаток сплавлялся с пиросульфатом калия, сплав растворялся в щавелевой кислоте при нагревании, осадок после прокаливания растворялся в НС1 с Н2О2. Церовая группа осаждалась из соляно-кислого раствора насыщенным раствором сернокислого калия. Двойные сернокислые соли церия, лантана, празеодимия и других редких земель после суточного стояния отфильтровывались. Церовая группа переосаждалась и содержание церия в церовой группе определялось иодатным методом. Кривая нагревания в интервале от 0 до

200° не дала никаких остановок.

Анализ минерала, приведенный в таблице, по комплексу ведущих элементов показывает принадлежность его к группе ортита. В исторической последовательности ортиту, принадлежащему к группе эпидота, сначала придавалась формула HCa₂ (Al, Fe, TR)₃ Si₃O₁₃, где элементы группы редких земель, как трехвалентные, считались изоморфно замещающими алюминий и объединялись с Al и Fe в одну группу. В 1930 г. Ф. Махачки (1) произвел иную группировку ведущих элементов этого минерала, основываясь только на близости ионных радиусов. Редкие земли объединяются им с кальцием в одну группу, и формула ортита, как и формула эпидота, имеет, по Махачки, следующий общий вид: $X_2Y_3Z_3$ (O, OH, F) $_{13}$, где под X подразумеваются ионы, изоморфные с Са (ионный радиус около 1,0 — 1,22), как редкие земли, торий, марганец, под Y — элементы, изоморфные с Al, т. е. магний, железо, частично титан, под Z — кремнезем, частично титан.

При пересчете анализа описываемого минерала из Бектау-Ата мы производили пересчет по Махачки, но с соблюдением принципа

электростатического баланса.

Таким образом, в нашем анализе изоморфное замещение Ca^+ трехвалентными редкими землями с атомным эквивалентом 1512 должно компенсироваться замещением более высоковалентных элементов менее валентными в этом же отношении; в нашем анализе это будет замещение трехвалентных A1 и Fe двухвалентным Fe и Mg. Как показывает графа 4 таблицы анализа, это замещение идет с избыточным атомным эквивалентом 1645 против 1512, и этот избыток (1645-1512=133), в свою очередь, компенсируется изоморфным замещением четырехвалентным титаном Остаток титана изоморфно замещает SiO_2 , и полученные в результате суммарные атомные эквиваленты вполне удовлетворительно дают простые кратные отношения, приводящие к формуле ортита по Maxayku (Ca, TR, Mn) $_2$ (A1, Fe, Ti) $_3$ Si_3 (O, OH) $_{13}$.

Количество кислорода, подсчитанное по принципу Махачки, дает несколько заниженное содержание О, равное 12,2 (вместо необходи-

мого 13 по формуле).

Таким образом, неизвестный редкоземельный минерал из гранитов

Бектау-Ата является ортитом. Характерные его особенности:

1) Очень низкое содержание воды, равное $0,29^{\circ}/_{0}$. В этом отношении ортит Бектау-Ата аналогичен ортиту Бастнез в Швеции, имеющему $0,33^{\circ}/_{0}$ воды и уд. вес 4,15.

2) Парагенезис с кальцитом.

3) Радиально-лучистая структура, напоминающая лучистые агрегаты турмалина.

4) Кривая нагревания, не имеющая остановок.

5) Отсутствие вспучивания перед паяльной трубкой, характерное для других ортитов.

Поступило 18 XI 1946

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ A. Machatschki, Cbl., A, No. 3, 89 (1930). ² C. Doelter, Handb. Mineralchem., 2, 2, 863, 1917.