ФИЗИОЛОГИЯ РАСТЕНИЙ

С. А. КАСПАРОВА

ФИЗИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ КАЛЛЮСООБРАЗОВАНИЯ В УСТОЙЧИВОСТИ ЦИКОРИЯ К МИКРООРГАНИЗМАМ

(Представлено академиком Л. А. Орбели 29 Х 1946)

Категория явлений устойчивости, обусловленных структурными особенностями растений, составляет в растительной иммунологии существенный раздел. Эту категорию устойчивости Fischer и Gäuman (1), Вавилов (2) и др. относят к явлениям просто устойчивости, отличая ее от собственно физиологического иммунитета, связанного с активной реакцией клеток растения-хозяина на внедрение паразита.

В процессе наших исследований удалось показать, что заживление ран и связанная с этим повышенная устойчивость растений к микроорганизмам вытекает из физиологических отношений между паразитом и хозяином. Чем выше физиологическая активность тканей растений при ранении, тем энергичнее проходят в них процессы кутинизации и каллюсообразования и тем выше устойчивость к микроорганизмам.

Для обоснования наших представлений о связи между физиологическими процессами, протекающими в растениях при заживлении ран, и каллюсообразованием, а также устойчивостью к микроорганизмам Sclerotinia Sclerotiorum (Lib) и Botrytis Cin. (Рег.) были поставлены опыты с культурой цикория в различных условиях внешней среды в течение 1938—39 гг. В результате этих опытов установлено, что реакция корня цикория на ранение и заживление раневой поверхности выражается в образовании кутинизированных рядов и каллюса. Чем слабее выражена интенсивность заживления раневой поверхности, скорость и энергня каллюсообразования, тем ниже устойчивость корней к указанным микроорганизмам.

Наибольшая интенсивность кутинизации раневой поверхности и каллюсообразования установлены в более раннем возрасте цикория. Молодым корням свойственно быстрое заживление ран и появление на раневой поверхности вслед за этим каллюса, который дает начало

почкам

Интенсивность заживления раневой поверхности и каллюсообразования с возрастом цикория, а также с наступлением периода покоя сильно падает; с нарушением же периода покоя интенсивность каллюсообразования возрастает, устойчивость корня к микроорганизмам вновь повышается.

Сортовое различие в скорости прохождения этих процессов проявляется в период активного роста сильнее, чем в период покоя. Смещение процессов кутинизации и каллюсообразования в связи с возрастной изменчивостью цикория и прохождением периода покоя свидетельствует о том, что энергия этих процессов зависит от сложного комплекса физиолого-биохимических процессов и носит общебиологический характер.

Скорость заживления ран, а также энергия каллюсообразования кор-

ней цикория изменяется под влиянием внешних воздействий

Так, по мере убыли воды в корнях * замедляется процесс кутинизации и каллюсообразования, а при значительном водном дефиците совершенно прекращается. При этом следует отметить, что чем больше возраст корней, тем сильнее сказывается отрицательное влияние обезвоживания на указанные процессы.

Процесс кутинизации и последующее каллюсообразование изменя-

ются также под влиянием низких температур

Воздействие на корни температурой 0° С в дальнейшем значительно стимулировало каллюсообразование, хотя заживление раневой поверхности (кутинизация) протекало слабее, чем при 18° С. Замедленная

Таблица 1 Взаимосвязь между интенсивностью дыхания, каллюсообразованием и устойчивостью корней цикория при ранении. Сорт Силезский

Сроки уборки	Продолжи- тельность опыта в днях	Корень целый		Корень разрезанный		
		СО2 в мг на 1 кг сырого веса за 1 час	поражен. ткань в % от веса корня	СО ₂ В МГ На 1 кг за 1 час	колич. обра-	поражен. ткань в % от веса корня
Август	1—3	43	Следы	68	33	Не заразились
	5—10	24	0,36	55	91	» »
	10—15	21	1,83	49	101	» »
Октябрь	1—3	18	Следы	49	21	Не заразились
	5—10	16	1,83	36	68	Следы
	10—15	15	3,74	24	53	0,070
Декабрь	1—3	15	3,40	37	13	Не заразились
	5—10	11	8,10	28	41	3,76
	10—15	12	11,70	16	48	4,31
Февраль	1—3	11	8,19	31	11	0,01
	5—10	9	18,23	19	29	4,64
	10—15	8	20,26	16	30	8,31
Апрель	1—3	19	4,36	54	19	Не заразились
	5—10	20	7,88	49	44	1,48
	10—15	21	11,21	85	49	3,65

кутинизация срезов клубней картофеля при низких температурах $(1-3^{\circ}\ C)$ отмечалась также Курсановым (3).

После воздействия на корень низкими температурами устойчивость корня к микроорганизмам сильно упала, с повышением же интенсивности каллюсообразования — вновь повысилась. Прямую зависимость между устойчивостью к микроорганизмам и интенсивностью каллюсообразования удалось установить помещением корней в анаэробные условия (в атмосферу азота).

Затухание процессов каллюсообразования и кутинизации вызвало заражение корней *Sclerotinia Sclerotiorum*, однако заражение протекало не столь интенсивно, как мы предполагали. Повидимому, за время опыта пребывание корней в атмосфере азота не вызывало сильных физиологических и оторических и

физиологических и структурных изменений тканей.

^{*} Различные градации потери влаги в корнях создавались путем подсушивания их при температуре 24—28° в Faust — Heim'e (7).

Ответной реакцией корней цикория на ранение, независимо от их возраста и биологического состояния, является усиление дыхательного

процесса (табл. 1).

Образование и дифференцировка каллюса также сопровождаются повышением энергии дыхания (4). Однако следует отметить, что усиление газообмена на местах срезов не прекращает каллюсообразования цикория за счет дифференцировки каллюса в листья, как это меет место в тау-сагызе или крым-сагызе. На одной и той же раневой поверхности цикория происходит одновременно дифференцировка образовавшегося каллюса в листья и возникновение нового

В момент кутинизации и каллюсообразования гриб не в состоянии вызвать заражение корней. Но по мере заживления ран, а также ослабления общего тонуса жизни, связанного с прохождением периода покоя, сопротивляемость корней и интенсивность дыхания падают (5).

В условиях обнаженной раневой поверхности происходит усиление внутриклеточных процессов (6, 7). Среди этих процессов немаловажную роль играют окислительные ферменты (3, 8). Результаты определения активности пероксидазы и каталазы, приведенные в табл. 2, показывают, что усиление активности этих ферментов начинается с момента ранения — в первые сутки — и остается высокой до тех пор, пока не

Таблица 2 Влияние ранения на активность ферментов. Сорт Силезский

Состояние	Длитель- ность опыта в днях	фермен	. окисл. нт. в мл КМпО ₄	Гидролитическая активность фермента инулазы (редуцир. сахара в $0/0$ на сух. вес)		
		перокси- даза	каталаза	контроль	гидролит. действие инулазы	актив- ность инулазы
Корень раненый	1—3	26	53	8,4	9,6	1,2
	3—5	34	59	8,7	10,3	1,6
	5—10	30	44	9,2	10,8	1,6
	10—15	22	40	8,5	9,1	6,6
Корень целый	1—3	14	32	9,3	16,5	7,2
	3—5	17	29	11,6	21,2	9,6
	5—10	15	30	10,7	19,7	9,0
	10—15	13	26	10,2	20,3	10,1

заканчивается заживление ран и каллюсообразование. После прекращения этих процессов активность ферментов остается все же наиболее высокой в сравнении с активностью ферментов контрольных целых корней.

Ранение корней усиливает также гидролитическое действие фермента инулазы, активность которой повышается параллельно с заживлением раневой поверхности и каллюсообразования. Это, вероятно, связано с необходимостью обеспечить молодые растения, развивающиеся в процессе дифференцировки каллюса, растворимыми формами углеводов.

Проведенные опыты позволяют считать, что процессы кутинизации и каллюсообразования подвержены изменениям в связи с возрастом,

сортом и условиями внешних воздействий.

Кутинизация и каллюсообразование, происходящие в процессе структурных изменений клеток, повышают сопротивляемость клеток к микроорганизмам. Энергичное деление клеток перицикла при ранении и новообразовании есть процесс физиологический, который сопровождается повышением энергии дыхания, усилением активности окислительных ферментов и т. д. Отсюда следует, что повышение сопротивляемости корней цикория при ранении происходит вследствие активирования физиологических процессов в тканях: борьба организма с внедрением носит не пассивный, а активный характер. При завершении кутинизации и каллюсообразования ослабляется сопротивляемость корней. Каллюс, суберин и прочие образования в дальнейшем служат лишь временной механической защитой для обнаженной раневой поверхности.

Институт Биохимии им. А. Н. Баха Академии Наук СССР

Поступило 5 VII 1946

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 E. Fischer u. Gäuman, Biolog. der Pflanzenbewohnenden Parasit. Pilze, Leipzig, 1928. ² H. И. Вавилов. Изв. Петровск. с.-х. академии, 4, 1 (1919). ³ A. Л. Курсанов, Обратное действие ферментов в живой растительной клетке, М., 1940. ⁷ H. Л. Курсанов, Биохимия, 8, № 2—3, 102 (1943). ⁴ В. О. Таусон, ДАН, 45, № 5 (1944). ⁵ С. А. Каспарова и Т. А. Акимочкина, Изв. АН СССР, сер. биол. № 2 (1940). ⁶ Д. Н. Насонов и В. Я. Александров, Реакция живого вещества на внешние воздействия. М., 1940. ⁷ Н. П. Кренке, Хирургия растений, 1928. ¹³ Р. Рона, Практикум по физиологической химии, М., 1930. ⁸ С. М. Прокошев, Биохимия, 9, № 1 (1944).