В. И. НИКОЛАЕВ, С. И. ГОЗДЕК, Г. Н. БОНДАРЕНКО и Т. И. АРНОЛЬД

ЯВЛЕНИЯ ДЕГИДРАТАЦИИ В КОНЦЕНТРИРОВАННЫХ РАСТВОРАХ К₄FeCy₆ ВБЛИЗИ ГРАНИЦЫ НАСЫЩЕНИЯ

(Представлено академиком И. И. Черняевым 17 IX 1946)

Растворимость K_4 FeCy₆ в воде изучалась многими авторами с давних пор (впервые Th. Thomson в 1818 г.), но лишь в 1927 г. R. H. Vallance (¹) точно установил наличие на политермической кривой растворимости точки превращения при 17,7° C, отвечающей переходу α -модификации K_4 FeCy₆·3H₂O в β -модификацию, βK_4 FeCy₆·3H₂O.

α-модификации K₄FeCy₆·3H₂O в β-модификацию, β K₄FeCy₆·3H₂O. По данным же E. Fabris (²) была зафиксирована на кривых нагревания и охлаждения вторая точка превращения 3-водного гидрата,

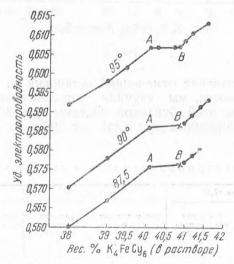
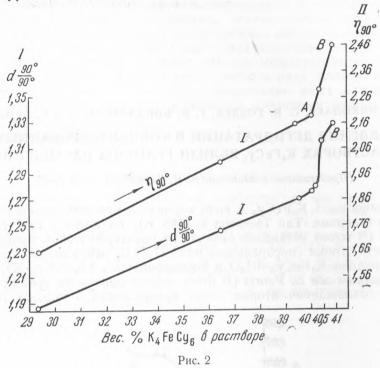


Рис. 1. Удельная электропроводность в системе $K_4 FeCy_6 - H_2O$

вероятно, в безводную соль K_4 FeCy $_6$ (или низший гидрат — точно не установлено) при температуре 87,3° и при концентрации в $41,23^0/_0$ K_4 FeCy $_6$ в растворе.

Нами изучались свойства концентрированных водных растворов

 K_4 FeCy₆ в пределах концентраций от 38,00 до 41,6 $^{\rm o}/_{\rm o}$.


Были изучены и подвергнуты рассмотрению изотермы удельной электропроводности (при 87,5; 90 и 95°), изотермы удельного веса (и удельного объема) и внутреннего трения при 90° (табл. 1).

Как можно видеть на рис. 1, изотерма удельной электропроводности при 87.5° в точке A при концентрации $40.10^{\circ}/_{0}$ К $_{4}$ FeCy $_{6}$, т. е. за $1^{\circ}/_{0}$ (с небольшим) до состояния насыщения, дает резкий излом —

остановку на протяжении линии AB. То же повторилось на изотермах удельной электропроводности при 90 и 95°.

Все растворы были ненасыщенными, твердой фазы при указанных

температурах не выделяли.

Чтобы понять значение отмеченной остановки на изотермах удельной электропроводности, мы изучили дополнительно удельные веса и внутреннее трение этой бинарной системы при 90° приблизительно в тех же концентрационных пределах (от 29,39 до 40,95% КаFeCy6).

. $\label{eq: Tadhuqa}$ Удельная электропроводность в системе K_4FeCy_6 — H_2O

	Изотерма 87,5°		Изогерма 90°		Изотерма 95°	
№ точки	концентрация К ₄ FeCy ₆ в рас- творе (вес. ⁰ / ₀)	удельная электропро- водность <i>k</i>	концентрация К ₄ FeC у ₆ в растворе (вес. 0/0)	удельная электропро- одность <i>k</i>	концентрация К ₄ FeCy ₆ в растворе (вес. 0/0)	удельная электропро водность <i>k</i>
1 2 3 4 5 6	38,00 39,00 40,10 41,00 41,20 41,40	0,5604 0,5671 0,5756 0,5772 0,5787 0,5803	38,00 39,00 40,10 41,00 41,20 41,40 41,60	0,5701 0,5777 0,5864 0,5872 0,5896 0,5920 0,5936	38,00 39,00 	0,5922 0,5985

На рис. 2 мы видим повторение явлений, отмеченных на изотермах удельной электропроводности. Особенно резко отмечается какое-то существенное изменение в структуре раствора при концентрации в

 $40,10^{\rm o}/_{\rm o}$ K₄FeCy₆ на изотерме внутреннего трения при 90°. Изотерма состоит из двух прямолинейных ветвей, пересекающихся в точке A.

Отчетливо это явление выступает и на рис. 3 (изотерма II), где графически выражен прирост величины внутреннего трения на единицу концентрации K_4 FeCy₆ ($\Delta \gamma / \Delta c$) по мере роста концентраций K_4 FeCy₆.

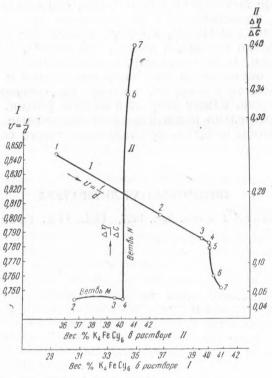


Рис. 3

Мы видим, как резко (почти под прямым углом по ветви N) и весьма значительно возрастает внутреннее трение на узком интервале концентраций от 40,10 до $40,95^{0}/_{0}$ K_{4} FeCy $_{6}$ (от точки 4 до точки 7).

Таблица 2 Удельный вес, удельный объем и внутреннее трение растворов K_4 FeCy $_6$ при 90°

Примечание	$\frac{\Delta \eta}{\Delta c}$	η_{90}°	$v = \frac{1}{d}$	d 90 90	K ₄ FeCy ₆ в раствор e(вес. 0/0)	№ точки
Вычислялось от точки <i>1</i> до точки <i>2</i> , от точки <i>2</i> до точки <i>3</i> и т. д	_	1,6528	0,844	1,1848	29,39	1
	0,047	1,9958	0,804	1,2430	36,67	2
	0,053	2,1500	0,787	1,2698	39,58	3
	_	_	0,783	1,2775	40,10	4
	0,049	2,1805	0,780	1,2819	40,20	5
	0,333	2,2639	0,761	1,3138	40,45	6
	0,392	2,4603	0,752	1,3285	40,95	7

На изотерме же удельных объемов (1/d) при 90° (кривая I) отмечается резкое и значительное уменьшение удельного объема от точки 4 до точки 7.

Итак, совокупность всех примененных нами методов исследования

приводит нас к констатированию в растворах К₄FeCy₆, близких к состоянию насыщения, особого состояния, при котором: 1) происходит резкое уменьшение удельного объема раствора, 2) происходит весьма значительное увеличение внутреннего трения и 3) почти не меняется электропроводность раствора. Все сказанное позволяет говорить о том, что дегидратация молекул

 K_4 FeCy₆·3H₂O, происходящая в твердой фазе при достижении раствором насыщения при 41,23°/₀ K_4 FeCy₆, происходит и в жидкой фазе, и притом несколько раньше, а именно при 40,10°/₀ K_4 FeCy₆.

Таким образом, можно полагать, что молекулы железисто-синеродистого калия оказываются уже подготовленными к кристаллизации несколько раньше того момента, который мы обычно считаем отвечающим равновесию между твердой и жидкой фазами. Но необходимо некоторое (относительно незначительное) дальнейшее концентрирование раствора, чтобы началась кристаллизация этого соединения.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. H. Vallance, J. Chem. Soc., 1927, 1331. ² E. Fabris, Gazz., 61, 527, 533 (1931).