Н. А. НАГИНСКИЙ

основы деления нижнечетвертичных отложений ЗАПАДНО-СИБИРСКОЙ НИЗМЕННОСТИ

(Представлено академиком В. А. Обричевым 6 XI 1946)

1. В 1942 г. на р. Чижапке (правый приток р. Васюгана) обследован разрез (у населенного пункта "70-й километр", с. Еремино и др.): 1. Глины сизовато-серые (синие) микрослоистые с буроугольными прослоями (с миоценовой флорой) на сильно размытой поверхности — до 5 м. 2. Песок с мелкой галькой и окатанными обломками подстилающих глин — 0,5 м. 3. Ржаво-серые пески на размытой поверхности— 8 м. 4. Ржаво-желтые пески с обилием крупной гальки до 10-20 см; в составе галек: гранит, сиенит, песчаники, сланцы — $0.75\,$ м. $5.\,$ Серые пески -8-10 м. 6. Переслаивающиеся пески и глины -0.5 м. 7. Светлосерые и желтые пески — 8 м. 8. Переслаивающиеся пески и глины — 3,5 м. 9. Темнокоричневые глины — 4 м. 10. Ржаво-желтые пески — 3 м. 11. Серые пески — 0.75 м. 12. Лессовидные суглинки — 1,25 м. 13. Почва.

В разрезе выделяем толщи: І — слои 2—3, соответствующие первому циклу размыва и отложений; II — слои 4-7 — второму циклу; III — слои 8—9, соответствующие ослаблению деятельности потоков и переходу к озерному и полуболотному режиму; IV — слои 10—11— соответствующие новому усилению эрозии, которое есть основания отнести ко времени заложения системы современной р. Чижапки. I и II толщи относятся к нижнечетвертичному времени и являются флювиоглациальными отложениями, что подтверждается их составом, строением и наличием в основании галек пород, чуждых бассейну реки. Такое наличие двух флювиоглациальных толщ, разделенных перерывом, имеется в ряде пунктов низменности и описано нами по р. Васюгану (экспедиция 1945 г). Более полный разрез нижнечетвертичной толщи, с включением промежуточной — "нефедовской" толщи мы видим на р. Ир-

тыш (²⁰), р. Йшим (⁶), р. Сым (²¹). 2. Работами В. И. Громова (¹) и Я. С. Эдельштейна (²) установлено, что ледниковый покров Западно-Сибирской низменности состоял из двух потоков — Уральского и Сибирского (Таймырского), смыкавшихся западнее р. Югана. Распространение типичных для потоков валунов (траппов — для Таймырского, гранитов — для Уральского) строго ограничено полосою стыка потоков.

Мы нанесли на карту оледенения (рис. 2) к югу от границы ледниковых потоков пункты, где среди флювиоглациальных отложений обнаружены гранитные валуны и гальки. Пункты 1, 2, 3, 4, 5 нанесены по данным (3) и нашим, пункт 6—по данным (4,1). При этом

обнаруживается существенное несоответствие.

К северу от границы оледенения, т. е. в пределах движения ледниковых масс, присущие каждому потоку отложения (с траппами для одного и гранитами для другого) не переходят за полосу стыка, а к югу, где действовали флювиоглациальные потоки, гранитные

валуны и гальки, которые могли быть принесены только от края Уральского ледника, распространены далеко к востоку за полосу смыкания ледников.

Такая картина могла получиться при направлении стока уральских флювиоглациальных вод на восток. Мы приходим к следующим выводам: а) две толщи флювиоглациальных отложений соответствуют двум

Рис. 1. Западно-Сибирская низменность времени Сибирского оледенения.

1 — граница Сибирского) (Таз-Таймырекого) ледникового покрова, 2 — I зона стока флювиоглациальных вод, 3 — II зона подпора и перестроех речных потоков

Рис. 2. Западно-Сибирская низменность Уральского оледенения.

1 — граница Уральского ледникового покрова, 2—I зона главного стока флювиоглациальных и речных вол, пункты с гранитными валунами и гальками, 3—II зона подпора и ее перестроек речных потоков

разновозрастным ледниковым потокам; б) флювиоглациальные воды позже наступавшего Уральского ледника частично размыли отложения Таймырского ледника и его флювиоглациал $({}^5,{}^6)$, а частью погребли их под собственными отложениями; в) воды времени Уральского оледенения стекали на восток — к Енисею; воды времени Сибирского оледенения имели сток по краю ледника на запад — к линии Иртыш — нижняя Обь. Такое разрешение получает вопрос о стоке вод $({}^7,{}^8,{}^1)$.

3. Рассмотрим карты оледенения (рис. 1, 2). Границы ледников нанесены: для Сибирского — по данным (1,5,6,10,12) и для Уральского — по данным (1,5,9,10). Восточная граница Сибирского ледника нанесена, исходя из следующего: по р. Енисею от г. Красноярска до впадения р. Н. Тунгуска (13) и по р. Н. Тунгуска (14) развит комплекс довюрмских террас, хорошо выдержанных на всем протяжении по типу (эрозионные или аккумулятивные) и высотам. Следовательно, на всем этом участке система Енисея существовала непрерывно и не разрушалась, что должно было бы последовать, если бы ледник где-нибудь здесь пересекал р. Енисей.

Севернее Н. Тунгуски проводим границу, интерпретируя данные (15-17). Из сравнения площадей следует, что Сибирское оледенение было самым крупным оледенением Западно-Сибирской низменности. В это время восток низменности получал осадков больше, чем запад

во время Уральского оледенения. Форма площади сибирского ледникового покрова и особенности распространения морен подводят нас к высказанному В. А. Обручевым (18) допущению о третьем центре оледенения низменности — Тазовском. Его роль, возможно, заключалась, главным образом, в поставке масс льда, которые разносили по низменности морены богатой каменным материалом Таймырской ветви. Все это подчеркивает самостоятельность Сибирского и Уральского оледенений.

4. События времени нижнечетвертичных оледенений изменяли режим стока вод. Выделяются несколько зон, из которых отметим две: I—зона

Стратиграфическая схема нижнечетвертичных отложений Западно-Сибирской низменности

Зона				1111		T e p	рас	Ы
площади		площадь ледникового покрова	Золы стока флюви	Золы стока флювиоглациальных вол	Вос	Восточн, часть		Западн. часть
Время оледенения	Сибирского	Уральского	Западная часть (1, 3, 5, 6, 9, 10, 20, 23, 28)	Восточная часть (3, 4, 13, 50, 21, 23)	р. Енисей (13, 14)	р. Н. Тунгуска р. Томь	p. Tomb (23, 24)	Абугано-Тобол. (25)
Верхне-	Покровные суглинки формирова-	Озерные и озерно- глациальные суглин- ки и пески	Слоистые суглино- Слоистые глины и супеси, частью озер-суглино-супеси, ча- но-болотные стью озерно-болотные	Слоистые глины и суглино-супеси, ча-	75 м	65—75	(3)	Терраса — ложе древней долины, секущей водораз-
-Энжин-	дельных плато и отложений «невыраженных в рельефе» террас	и е- в скими валунами р-		Диагональные пес- Диагональные пес- ки срвалунами ураль-ки, гравелистые, га- ских пород	95—105 м	95—105	85—90	Терраса — вто- рая к упомянуто- му ложу
СибУраль- ское меж- ледниковье	Локровные суглино-супеси	Л Л Л Покровные но-супеси («и	Облессов	анные пес- Облессованные (частью каолинаярованные) пески и супеси (нефедовская» толща	Bp	Врез к следующей террасе	щей те	ppace
Верхие-	1	толща сизых суглин- ков»)	Суглинки, суглино- супеси («верхняя тол- ща сизых суглинков»)	Пески	130 м	120—135	125	Терраса, сложен- ная осадками по- лустоячих бассей- нов
-эндэдЭ	Морена с си- бирскими валу- нами	Слоистые пески	Слоистые пески с	Слоистые пески с галечниковыми про- слоями	160—180 м	160—180	ны ские» сприые	Формирование равнинного релье- фа
-ЭнжиН	Глины, пески	Суглинки, част озерно-болотные («нижняя толща зых суглинков»)	ъю Суглинки (нижняя Глин толща «сизых сугли- супеси си- нков»)	Глины, суглинки, супеси	190—200 м	190—200	ů.	Водораздельные суглинки

стока флювиоглациальных вод (здесь смешивались не только воды таявшего ледника и вливавшихся с юга рек, но и приносимые ими осадки, неорганические и органические); II — зона подпора и перестроек

речных потоков.

Раздичия этих зон запечатлены в рельефе (II зона приятствовала возникновению впадин, различных по генезису, теперь частично озерных), в режиме подземных вод (II зона отмечена засоленными водами (см. карту в работе (19)), что является результатом благоприятных при подпоре вод условий соленакопления; в I зоне и в местах прорыва реками II зоны — пресные воды) и, наконец, в отложении типичных осадков.

5. Схема четвертичных отложений низменности и данное В. Н. Сукачевым (20) (деление на толщи: "сизых суглинков", "диагональных песков", "суглино-супесей" и промежуточной — "нефедовской"), рассмотренные в свете самостоятельности двух оледенений, положены

в основу предлагаемой схемы нижнечетвертичных отложений.

Соответственно особенностям в направлениях потоков вод — на запад. или на восток — имеем различия в мощности и грубости осад-

ков в западной и восточной половинах низменности (см. схему).

При стаивании ледника формировались водораздельные плато и "невыраженные в рельефе террасы" $(^{27})$. Эти процессы не ограничивались площадями, покрывавшимися ледниками (по р. Ваху $(^{12})$, р. Назыму $(^{5})$, р. Тыму $(^{11})$), но распространялись и значительно южнее (по р. Иртыш (26), р. Ишим (6)). 6. События рассматриваемого времени запечатлелись в речных

долинах образованием террас. Ритм оледенения запечатлевался в ритме

террасообразования.

Под углом зрения двух оледенений и сопряженных с ними перестроек речной сети могут быть объяснены известные особенности в характере и количестве террас рек низменности. Реки I и II зон отличаются недостаточностью террас, в то время как реки вне этих зон имеют более развитые комплексы. Здесь также восток существенно отличался от запада. На востоке Енисей существовал как мощная магистраль, где с большим эффектом запечатлевались в террасах события. На западе эти события также запечатлелись в террасовых образованиях, но, по целому ряду обстоятельств, значительно слабее.

Томский государственный университет

Поступило 6 XI 1946

ШИТИРОВАННАЯ ЛИТЕРАТУРА

1 В. И. Громов, Тр. Комиссии четв. пер., 3, в. 2, стр. 41, 42 (1934). ² Я. С. Эдельштейн, Природа, 6 (1931). ³ Дм. Драницын, Мат. по почвоведению и геологии зап. ч. Нарымского края, 1915, стр. 57—60. ⁴ Р. С. Ильин, Тр. Томск. краев. музея, 3, в. 1, стр. 40 (1929). ⁵ В. А. Дементьев, ИГГО, 4, стр. 472, 473 (1936). ⁶ А. Г. Бер, Бюлл. Моск. об-ва исп. пр., Геол., 1, стр. 74, 77, 83 (1938). ⁷ Г. И. Танфильева, Тр. Геолог. кабинета, 5, 173 (1902); География России, Украния, 2, в. 2, стр. 142 (1923). ⁸ В. А. Обручев, Сб. геолог. и полезн. ископаем. севера СССР, 1, 1935, стр. 12. ⁹ С. Г. Боч, Тр. КЧ, 5, в. 1 (1937). ¹⁰ Л. Н. Ивановский, Тр. Томск. гос. ун-та, 95 (1939). ¹¹ А. Е. Ходьков, ДАН, 2 (1935). ¹² В. А. Дементьев, ИГГО, 1, стр. 115 (1934). ¹³ М. П. Нагорский, Вестн. Зап.-сиб. геол. треста, 5 (1937); 3 (1941); Мат. по геолог. Красноярск. края, 4 (1938); 6 (1939). ¹⁴ С. Л. Куникшев, Тр. Геоморфол. ин-та АН СССР, № 11 (1934). ¹⁵ П. Л. Пирожков, Землеведение, № 1—2, стр. 82 (1931). ¹⁶ Н. Н. Урванцев, Тр. ГГРУ в. 113, стр. 7 (1931). ¹⁷ В. Н. Сакс, ДАН, 46, № 6, стр. 262 (1945). ¹⁸ В. А. Обручев, Бюлл. КЧ, 3 (1931); Геология Сибири. 3 (1938). ¹⁹ М. И. Кучин, Подземн. воды Обь-Иртышск. басс., 1940, прил. черт. 2. ²⁹ В. Н. Сукачев, Экспедиции АН СССР 1931, 1932, 1935 гг. ²¹ П. А. Никитин, Мат. по геолог. Зап.-сиб. края, № 12, стр. 663 (1940). ²² В. Келлер, ИГГО, 5 (1936). ²³ Б. Ф. Петров, ИГГО, 5 (1934). ²⁴ К. В. Радугин, Вестн. Зап.-сиб. Г.-р. тр., № 1, (1934); Мат. по геолог. Зап.-сиб. края, 9 (1934). ²⁶ Г. Е. Быков, ИГГО, 6 (1936). ²⁷ С. С. Неуструев, Почвоведение, 3 (1925). ²⁸ Л. В. Введенский, Тр. ВГРО, в. 330 (1933).