М. В. ФЕДОРОВ

ВЛИЯНИЕ НА ФИКСАЦИЮ АЗОТА АТМОСФЕРЫ АЗОТОБАКТЕРОМ ВЕЩЕСТВ, РЕАГИРУЮЩИХ С КАТАЛИЗАТОРОМ ФИКСАЦИИ АЗОТА КАК С ОСНОВАНИЕМ

(Представлено академиком А. А. Рихтером 4 VIII 1946)

Катионы тяжелых металлов оказывают угнетающее влияние на фиксацию азота атмосферы азотобактером даже в сравнительно малых концентрациях (4). Такое влияние их обусловливается, повидимому, тем, что они изменяют дисперсность катализатора фиксации азота за счет взаимодействия с его карбоксильной группой. В связи с этим представлялось интересным установить, как будут влиять на фиксацию азота соединения, способные вступить в реакцию с катализатором как с основанием.

Для решения этого вопроса были поставлены опыты с борной, молибденовой, фосфорно-молибденовой и тимонуклеиновой кислотами. Все опыты ставились на питательной среде для азотобактера (наша модификация) с 1,8 г инвертного сахара на 100 мл среды. После стерилизации среда заражалась 1 мл суспензии Azotobacter agile и ставилась в термостат с температурой 30°С на 15 дней. По истечении этого срока в среде производились определения неиспользованного сахара (по Бертрану), общего азота (по Кьельдалю) и числа выросших клеток азотобактера (методом прямого счета под микроскопом).

Результаты анализов приведены в таблице.

Как можно видеть из приведенных цифр, небольшие концентрации борной кислоты весьма значительно стимулируют процесс фиксации азота. При 0,0005 моля этого вещества в среде интенсивность фиксации азота атмосферы на 40% выше контроля. Повидимому, борная кислота вступает в химическое взаимодействие с катализатором фиксации азота и дает соединение, обладающее большей дисперсностью, что приводит к увеличению активной поверхности катализатора и к повышению продуктивности связывания азота атмосферы. Бор давно уже привлекает внимание исследователей в качестве важного микроэлемента. Его стимулирующее влияние на активность клубеньковых бактерий было отмечено еще в 1925 г. Бренчли и Торнтоном (1), а на активность азотобактера — нами (2). Однако в том и другом случае вопрос не был достаточно расчленен, и истинная природа воздействия бора оставалась неизвестной. Только теперь можно считать установленным, что малые дозы бора могут взаимодействовать с ферментами клетки и давать соединения более дисперсные, чем исходное состояние этих ферментов в клетке. В силу этого они усиливают интенсивность дыхания и фиксации азота.

Молибденовая кислота при концентрации в 0,001 моля еще сильнее активирует фиксацию азота атмосферы азотобактером, чем борная кислота. При этой дозе данного вещества в растворе фиксация

Влияние на фиксацию азота атмосферы азотобактером борной, молибденовой, фосфорно-молибденовой (натриевая соль) и тимонуклеиновой кислот

Концентрация кислоты в среде в молях	Использовано сахара в г	Интенсив- ность ис- пользова- ния сахара в % от контро- ля	Фиксировано азота атмосферы в мг			Интенсив-	
			на 1 г сахара в отдель- ной куль- туре	на 1 г сахара в среднем	на 1 г- моль гексоз	ность фиксации в % от контроля	Число вырос- ших клеток азотобактера
		Бо	рная в	кислот	a	20	
Контроль без борной кис- лоты	1,54	100,0	7,89 7,91	7,90	1 402,0	100,0	1,6 · 1010
0,0001	1,58 1,53	102,6	8,76 8,40	8,58	1 544,4	110,1	$1,62 \cdot 10^{10}$
0,0005	1,53 1,58 1,41	102,6	11,61	10,90	1 96?,0	140,0	1,41 · 1010
0,005	1,53 1,58	98,0	,80 7,50 7,89	8,15	1 467,0	104,5	1,28 - 1010
0,01	1,53 0,99	102,6 62,4	8,06 6,70	7,98 6,77	1 416,0	101,0	1,84 · 1010
MATE OF BUILD	0,90]	0.764 RO	6,85	Date in	1 216,6	86,7	$1,48 \cdot 10^{10}$
Voument for		олибд	снова	ая кис	лота		
Контроль без молибдено- вой кислоты	1,80	100,0	8,0 7,31	7,65	1 377,0	100,0	6,24 · 10 ¹⁰ ·
0,0001	1,67 1,80	100,0	12,50 12,81	12,65	2 277,0	161,7	7,11 · 1010·
0,000	1,67 1,67 1,58	96,3	13,10 13,17 13,09	13,14	2 365,2	171,8	5,97 - 1010
0,005	1,62 0,59	92,8 31,0	13,39	13,24 3,36	2 383,2	173,9	6,78 · 1019-
Φαςφ	0,59 орно-м	ar and	3,71	Las di todia	604,8	43,8	1,13 · 1010
		олиоде		кислот	а (натр	иевая солі	b)
Контроль без фосфорно- молибдено-	1,08 1,08	100,0	7,28 7,93	7,61	1 369,8	100,0	n m 21 naob men
вой кис л оты 0,00001	1,67 1,67	154,7	13,66 14,13	13,89	2500,2	182,5	TOTA HIGH
0,0001	1,62 1,62 1,58	150,0	14,11 14,23	14,13	2550,6	186,1	PART TOTAL
0,01	1,53 1,53	144,0	14,44 15,62 11,80	15,03	2 705,2	197,1	HIP OLUTT
The state of the s	1,53	141,7	12,33	12,07	2 172,6	158,5	Mediani Mediani
Контроль без		m on y k .		ая кис.	лота		
тимонукле- иновой кис- лоты	1,80	100,0	8,32 8,30	8,31	1 495,8	100,0	i dognos i dognos
0,00001	1,67 1,67	92,8	8,24 8,64	8,44	1 519,2	101,5)(((()))
0,0001	1,67 1,65	91,9	8,20 7,87	8,04	1 447,2	97,0	itte _d
0,001	1,67 1,63 1,67	92,2	8,42 9,08 11,88	8,75	1 575,0	105,3	Hav <u>ke</u>
and the	1,62	92,1	11,66	11,82	21_7,6	162,3	-

азота на 73,9 % выше, чем в контроле. Еще более эффективные результаты дает фосфорно-молибденовая кислота. Если при 0,001 моля молибденовой кислоты в среде фиксация азота атмосферы была на 73,9 % выше, чем в контроле, то при наличии такой же концентрации фосфорно-молибденовой кислоты она поднялась до 97,4 % выше контроля. Повидимому, фосфорно-молибденовая кислота еще легче взаимодействует с катализатором фиксации азота как с основанием и дает комплексные соединения, обладающие большой активной поверхностью. В результате не только возрастает интенсивность фиксации азота атмосферы на 1 г использованного сахара, но сильно ускоряется и окисление сахара в актах дыхания. Благодаря этому возрастает и скорость роста азотобактера (эта культура закончена на 10-й день

вместо 15-го дня обычно).

Так как в этом опыте интенсивность дыхания азотобактера оказалась на 50 % выше, чем в контроле, то имеются основания полагать, что вещества, реагирующие с ферментами как с основаниями, ускоряют не только фиксацию азота атмосферы, но и дыхание. Повидимому, и ферменты дыхания содержат в своем составе вещества, реагирующие с вышеуказанными анионами в качестве оснований. Их природа также коллоидна, и от степени дисперсности этих коллоидов зависит, видимо, их фактическое участие в катализе. Поэтому можно предполагать, что положительное влияние таких микроэлементов, как молибден и бор, связано в первую очередь с их воздействием на физико-химическое состояние ферментов клетки и их активность, что приводит к ускорению всех процессов в организме, в том числе и процессов синтеза новой живой протоплазмы. Весьма вероятно, что влияние бора и молибдена на растения такое же, как и на микроорганизмы.

Связь активирующего действия этих кислот с изменением дисперсности катализатора фиксации азота может быть подтверждена и данными опыта с тимонуклеиновой кислотой, которая, как известно, повышает устойчивость белка в растворе и оказывает на фиксацию

азота такое же влияние, как и эти кислоты.

При концентрации тимонуклеиновой кислоты в среде в 0,0025 моля фиксация атмосферного азота поднялась на 62,3 % выше контроля. Несмотря на наличие в питательной среде 52,5 мг связанного азота тимонуклеиновой кислоты, азотобактер фиксировал 20,02 мг азота атмосферы на 1,67 г использованного сахара (в среде найдено 72,52 мг азота). Отсюда следует, что азот тимонуклеиновой кислоты совершенно недоступен азотобактеру и что взаимодействие тимонуклеиновой кислоты с катализатором фиксации азота однотипно с действием борной и молибденовой кислот и приводит к образованию соединений с более высокой степенью дисперсности. Данные этих опытов дают нам также прямое доказательство того, что аминная группа катализатора фиксации азота, через которую могут реагировать все рассмотренные выше вещества, прямого участия в фиксации азота атмосферы не принимает.

Московская сельскохозяйственная академия им. К. А. Тимирязева

Поступило 4 VIII 1946

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ W. Brenchley and H. Thornthon, Proc. Roy. Soc., B, 98, 373 (1925). ² М. Федоров, Микробиология, 13, В. 1 (1944). ³ М. Федоров, ДАН, 48, № 8, 603 (1945); 49, № 9, 702 (1945). ⁴ М. Федоров, ДАН, 51, № 1, 61 (1946).