В. В. ЧЕЛИНЦЕВ, член-корреспондент АН СССР

ОБРАЗОВАНИЕ ОКСОНИЕВЫХ СОЕДИНЕНИЙ АЛКОГОЛЕЙ С СЕРНОЙ КИСЛОТОЙ ПРИ ПРОЦЕССЕ ЭТЕРИФИКАЦИИ И ИЗУЧЕНИЕ ИХ ВЯЗКОСТЕЙ

При действии кр. H_2SO_4 на алкоголи последние постепенно этерифицируются, но, оттитровывая через известные промежутки времени не вошедшую в реакцию кислоту, можно видеть, что этот процесс начинается далеко не сразу. А между тем, по нашим термохимическим определениям, мы заметили, что при смешении алкоголей с серной кислотой тотчас же выделяется довольно значительное количество тепла, измеряемсе 6—7 ккал. на г-мол. алкоголя. Выделение тепла происходит толчком, а затем температура смеси падает, и, когда начинается собственно процесс этерификации, она находится на оченьнизком уровне. Этот, кажущийся странным, феномен мы объясняем образованием оксониевых соединений между алкоголями и серной кислотой; возникновением именно этих соединений поясняется, по нашему мнению, растворимость даже обычно нерастворимых алкоголей, как бутилового и амилового, в крепкой серной кислоте.

Для пояснения каталитической роли кр. $\rm H_2SO_4$ при получении сложных эфиров алкоголей с органическими кислотами Либих дал извест-

ную классическую схему, выражаемую двумя уравнениями:

$$R \cdot OH + H_2SO_4 = SO_4HR + H_2O$$
,
 $CH_3COOH + SO_4HR = CH_3 \cdot COOR + H_2SO_4$.

И, хотя Грэм возражал против этого, в последующем эта схема была принята как основная для выражения процесса этерификации. Теперь, в свете новых фактов, к этой классической схеме должна быть сделана поправка, в том смысле, что указаным двум уравнениям в действительности предшествует еще уравнение образования оксониевого соединения. А может быть, при образовании сложных эфиров первое из приведенных выше двух уравнений и не обязательно; тогда схема примет следующий вид:

$$R \cdot OH + H_2SO_4 = \frac{R}{H} O \cdot SO_3H$$

$$CH_3 \cdot COOH + \frac{R}{H} O \cdot SO_3H = CH_3COOR + H_2O + [H_2SO_4]$$

При образовании же сернокислого эфира оксониевая стадия несомненна. Чтобы яснее очертить границу этой стадии перед второй стадией, т. е. стадией образования эфира, мы поставили опыты действия крепкой $1000/_0$ H_2SO_4 на алкоголи при температурах от 0 до 50° , с оттитровыванием через известные промежутки остающейся серной кислоты раствором едкого натра. По полученным при этом результатам

можно видеть, с какой быстротой чидет реакция этерификации серной кислоты алкоголями при разных температурах.

Опыты дали следующие результаты (см. табл. 1, 2 и рис. 1).

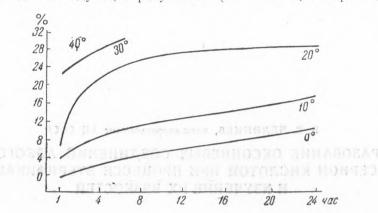


Рис. 1. Диаграмма скоростей этерификации от 0 до 50°

Из приведенных данных видно, что при 10° этерификация начинается через 1/2 часа; через 1 час она достигает 5,30/6, но до максимума в 31,80/6 доходит лишь через 5 суток. Пр и 20° через 15 мин. входит в реакцию уже 5,90/6 серной кислоты, через 1 час — около

Таблица 1 Действие 100% Н₂SO₄ на изо-бутиловый алкоголь (1 мол./1 мол.) (убыль в серной кислоте в процентах)

Через сколько времени после смешения в час.	00	10°	20°	30°	40°	50°
		11.1		10.15.21		9 19 R
Тотчас	0	0	0	0	16	23,4
0,25	0	1,7	5,9	ок. 15	25,2	27,5
1	0	5,3	ок. 11	22,7	31,0	31,8
2	2	6,5	16,1	25,7	31,8	_
3	2,6	8,0	21,9	27,2	11-	-
1	3	9,6	~23,0	28,5		-
5	3,7	11,5	~24,5	30,3	-	+
10	-	-	_	31,8	_	_
24	12,1	18,9	31,8	100	-	_
120		31,8	-		- CL 9	100
192	31,8	1-5		10,53	1 1 1	T -
						Larry.

 $11^{0}/_{0}$, весь процесс завершается через 24 часа. При 30° этерификация проходит уже через 15 мин. на $15^{0}/_{0}$, через час — на $22,7^{0}/_{0}$, а через 10 час. доходит до максимума в $31,8^{0}/_{0}$. При 40° тотчас же после смешения в эфир превращается $16^{0}/_{0}$ серной кислоты, через 15 мин. — $25,2^{0}/_{0}$, через 1 час — $31,0^{0}/_{0}$, а через 2 часа процесс доходит до максимума в $31,8^{0}/_{0}$. При 50° уже при смешении образуется $23,4^{0}/_{0}$ сложного эфира, считая на серную кислоту, через 15 мин. — $27,5^{0}/_{0}$ и через 1 час этерификация доходит до максимума в $31,8^{0}/_{0}$.

Чистая оксониевая фаза существует более длительное время только при 0° и ниже. Здесь даже через 1 час еще не наблюдается никакого изменения в количестве серной кислоты, через $1^1/_2$ часа едва начинается процесс этерификации, и к 2 час. он достигает лишь $2^0/_0$, через 4 часа — $3^0/_0$, через сутки доходит до $12,1^0/_0$, а для полного

завершения требует 8 суток.

Таким образом, при 0° мы имеем чистую оксониевую форму на протяжении промежутка времени в $1^{1}/_{2}$ часа, что дает возмож-

ность изучать ее в этом интервале.

Мы решили исследовать образование этих оксониевых форм алкоголей с серной кислотой по кривым вязкостей на примере изо-бутилового алкоголя и изо-амилового алкоголя. Оба эти алкоголя хорошо

Таблица 2
Время достижения максимальной этерификации (в часах) (100% H₂SO₄ + + *i* C₄H₈·OH) (1 мол./1 мол.)

10° 20° 30° 40° 50°
192 120 24 10 2 1

растворяются при 0° в серной кислоте с выделением тепла в количествах, характерных для образования оксониевых комплексов, и с значительным повышением вязкостей алкоголей до норм, характерных для их комплексов.

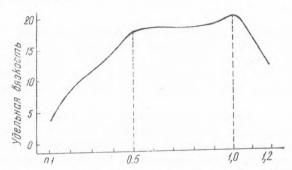


Рис. 2. Определение вязкостей для смесей i - C_4 · H_9 · $OH + H_2SO_4$

Для опытов мы брали определенные навески алкоголей и к ним постепенно прибавляли рассчитанные количества кр. $100^{\circ}/_{0}$ $H_{2}SO_{4}$, увеличивая постепенно — от навески к навеске — количества последней от 0.1 моля до 0.5 моля, а затем — дальше — до 1 моля и выше на

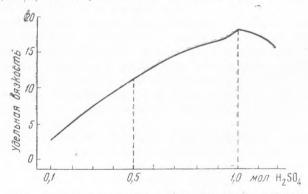


Рис. 3. Определение вязкостей для смесей i - C_5H_{11} · OH + H_2 SO_4

каждый 1 моль алкоголей. Жидкости перед смешением охлаждались до 0°, и смешение их производилось с осторожностью, во избежание повышения температуры, в баке с ледяной водой.

В результате получены кривые с характерными максимумами для биалкогольных и моноалкогольных комплексов (см. рис. 2 и 3).

Полученные кривые показывают, что при отношениях 1 мол. спирта на $^{1}/_{2}$ мол. $H_{2}SO_{4}$ и 1 мол. спирта на 1 мол. $H_{2}SO_{4}$ наблюдаются пе-4 дан ссер, т. LV, N_{2} 4

реломы, отвечающие вышеуказанным комплексам; при дальнейшем

же увеличении серной кислоты кривые резко падают.

Вязкость моноалкогольного комплекса изо-бутилового алкоголя с серной кислотой оказалась равной 18,6, биалкогольного комплекса—17,6; вязкость моноалкогольного комплекса изо-амилового спирта—17,2; биалкогольного 11,0. А для простых смесей эти величины были бы 3 и $3^{1}/_{2}$.

При действии воды комплексы распадаются и алкоголи регенерируются со всеми их характерными свойствами: изобутиловый алкоголь с

т. кип. 108°, изоамиловый алкоголь— с т. кип. 130°.

Полученные дистектические точки на диаграммах показывают, что для алкоголей с серной кислотой существует два рода комплексов:

 $[R \cdot OH]_1 \cdot H_2 SO_4$ и $[R \cdot OH]_2 \cdot H_2 SO_4$.

Вязкости этих комплексов так значительны, что представляют большой интерес; они превосходят вязкости компонентов—серной кислоты и алкоголей—приблизительно в 5 раз.

Поступило 6 XII 1946