А. МЫШКИС

об одной геометрической лемме, имеющей ПРИЛОЖЕНИЕ В ТЕОРИИ УСТОЙЧИВОСТИ ЛЯПУНОВА

(Представлено академиком А. Н. Колмогоровым 27 VII 1946)

Пусть в n+1-мерном евклидовом пространстве x_1,\dots,x_n,t E_{n+1} имеется область G. Мы впредь будем считать, что G удовлетворяет условию х: существует непрерывное отображение х полуполосы

$$s \in [0, 1], t \in [0, \infty)$$
 (r. e. $0 \le s \le 1, 0 \le t < \infty$)

в E_{n+1} такое, что для любых s и t, удовлетворяющих (1), будет

$$\chi(s, t) \in G^t \quad (s \neq 0),
\chi(0, t) = \{0, \dots, 0, t\} = O_t, \quad \rho(\chi(1, t), O_t) \geqslant a > 0;$$
(2)

верхний индекс t означает, что берется совокупность всех точек множества, имеющих данное значение t, а $\rho(A, B)$ есть расстояние между точками A и B; a не зависит от t.

Пусть, далее, в гиперплоскости t=0 имеется конечное n-1-мерное многообразие S (см. $(^1)$, стр. 60 и гл. 10); мы предположим, что S содержит начало координат внутри себя * и целиком лежит в цилиндре C

$$\sum_{i=1}^n x_i^2 < a^2.$$

Пусть, наконец, в E_{n+1} имеется семейство траекторий T(A,t) $(0 \le t < \infty$, $A \in \overline{S \cap G}^{**}$), где

$$T(A, t) \in E_{n+1}^t, \quad T(A, 0) = A, \quad 0 < \rho(T(A, t), O_t)$$

$$(t \in [0, \infty), \quad A \in \overline{S \cap G}); \tag{3}$$

при этом T(A,t) есть непрерывная функция совокупности аргументов на своей области определения. Мы поставим для семейства траекторий условие Γ : пусть для A_0 и t_0 $T(A_0, T_0)$ $\overline{\in}\, G - G = \Gamma$. Тогда для любых $t_1 > t_0$ и $\varepsilon > 0$ существует такое $\delta > 0$, что при $\rho(A_1, A_0) < \delta$ имеет место, по крайней мере, один из двух случаев:

1°. $T(A_1, t) \in \Gamma$ при некотором $t \in [0, t_1]$.

2°. Расстояние от $T(A_1, t_1)$ до Γ не превосходит ε .

Лемма. Пусть выполнены условия у, Г и

$$\rho(T(A, t), O_t) < a \quad (0 \le t < \infty, A \in \overline{S \cap G}).$$
 (4)

** \overline{E} есть замыкание E.

^{*} Как известно, S делит гиперплоскость t=0 на две части (см. (2), (3), X, \S 2, 4 стр. 395).

Tогда для некоторого $A \in \overline{S} \cap \overline{G}$ для всех $t \in [0,\infty)$ будет

 $T(A,t) \in \overline{G}$.

Доказательство. 1) Ориентируем S^* и обозначим через $\mathcal{S}(t)$ совокупность тех точек $A \in S \cap G$, для которых при всех $\tau \in [0,t]$ $T(A,\tau) \in G$; в частности, $S(0) = S \cap G$. Из непрерывности T следует, то S(t) открыто на S при каждом t (\in [0, ∞)). Посредством функции T S(t) непрерывно отображается на T (S(t), t) = P(t). Таким образом, P(t) является кривым бесконечным n-1-мерным ориентированным комплексом. В то же время при каждом t посредством функции у отрезок [0,1], ориентированный в естественном порядке, непрерывно отображается на кривую l_t

2)
$$T[\overline{S(t)} - S(t), t] \subset \Gamma \quad (t \in [0, \infty)). \tag{5}$$

Действительно, пусть $A_0 \in \overline{S(t_0)} - S(t_0)$. Тогда $T(A_0,t_0) \in E_{n+1} - \overline{G}$, что сразу следует из непрерывности T. Пусть $T(A_0,t_0) \in G$. В силу $A_0 \in S(t_0)$ траектория $T(A_0,t)$ пересекает Γ по крайней мере один раз при $t=t' \in [0,t_0]$. В силу условия Γ для любого $\varepsilon>0$ найдется окрестность $U(A_0)$ такая, что если $A_1 \in U(A_0) \cap S(t_0)$, то $T(A_1,t_0)$ отстоит от Г не больше, чем на є. Однако это, очевидно, противоречит непре-

рывности T, $A_0 \in \overline{S}(t_0)$ и $T(A_0,t_0) \in G$, что и требуется. 3) В силу (2), (3), (4) и (5) мы можем рассмотреть индекс $\kappa(t)$ пересечения P(t) и I_t в E_{n+1}^t , ориентированном по схеме $OX_1 \dots X_n$. При этом для того, чтобы пересекались конечные полиэдры, мы можем апроксимировать S(t) конечным полиэдром $S^*(t)$; ясно, что индекс пересечения $T(S^*(t),t)$ с l_t не зависит от конкретного выбора \mathcal{S}^* , если только апроксимация настолько хороша, что $\overline{P(t)-T(\mathcal{S}^*(t),t)}\cap l_t$ пусто.

4) х (0) = \pm 1, в зависимости от ориентации S. Действительно, в E^0_{n+1} I_0 начинается внутри S и кончается вне S, в то время как $S \cap I_0 \subset P(0) = S(0)$; утверждение сразу следует из двусторонности S (см. (1), § 76, стр. 317).

5) х(t) является целочисленной непрерывной функцией t для каждого t_0 с непустым $S\left(t_0\right)$. Действительно, в силу непрерывности T и γ апроксимирующий комплекс $S^*(t_0)$ (см. 3)) годится для подсчета $\varkappa(t)$, если только $|t-t_0|$ достаточно мало. Инвариантность же индекса пересечения $T(S^*_+(t_0),t)$ с l_t при достаточно малом $|t-t_0|$ следует, например, из (1), §§ 73 — 74.

6) S(t) непусто при всех $t \geqslant 0$. Действительно, пусть в противном случае $t_0>0$ есть нижняя грань тех t, для которых S(t) пусто. Тогда при $0 \leqslant t < t_0$ х $(t)=\pm 1$, и потому $P(t)\cap l_t$ непусто (см. (¹), § 74, стр. 304). Возьмем $t_1 < t_2 < \ldots > t_0$ и $A_i \in S(t_i)$ $(i=1, 2, \ldots)$ так, что

$$T(A_i,t_i) \in l_{t_i}$$
 $(i=1, 2, ...), A_i \xrightarrow[i \to \infty]{} A \in \overline{S \cap G}.$

Тогда $T(A,t_0)\in l_{t_0}$, и поэтому $T(A,t_0)\in G$. Поэтому, в силу непрерывности T, при достаточно больших i должно быть $T(A_i,t)\in G$ для всех $t\in [0,t_0]$. По определению, t_0 для некоторого $t'\in [0,t_0]$ $T(A,t')\in \Gamma$. Отсюда, в силу условия Γ , расстояние от $T(A_i,t_0)$ до Γ стремится к 0 при $i\to\infty$, и $T(A,t_0)\in \Gamma$, что невозможно.

7) Пусть $A \in \overset{\circ}{\Pi} \overline{S(t)} \subset \overline{S \cap G}$. Ясно, что для всех $t \in [0,\infty)$ будет $T(A,t)\in \bar{G}$. Лемма доказана.

^{*} Это всегда возможно; см., например, (3), X, § 2, 4, стр. 395.

Замечание 1. Неравенства в (2) и (4), связанные с числом a, можно ослабить. Именно, можно требовать только р $(\chi(1,0),O_0)\geqslant a$, в то время как при t>0 требовать $\chi(1,t)\ \overline{\in}\ P(t)$ (при обозначениях 1)). Утверждение леммы останется в силе; доказательство не изме-

Замечание 2. Положим, что кроме выполнения условия Г дано следующее: пусть A — произвольная точка, для которой $T(A,t) \in \Gamma$ при некотором $t\in [0,\infty)$; тогда найдется окрестность $U\left(A\right)$ и число $t_{0}\left(A\right)$ такие, что для любой $A' \in U(A)$ при некотором $t'(A') \in [0, t_0(A)]$ $T(A',t'(A')) \in \Gamma$. Тогда лемму можно усилить, именно, тогда для некоторого $A \in S \cap G$ для всех $t \in [0,\infty)$ будет $T(A,t) \in G$.

Действительно, в силу выполнения нового условия для любых

 $A \in \overset{\circ}{\Pi} \overline{S(i)}$ (см. 6)) и $t \in [0,\infty)$ будет $T(A,t) \in \Gamma$.

Замечание 3. Обозначим через $\tau(A)$ $(A \in \overline{S} \cap \overline{G})$ момент первой встречи T(A, t) с Γ $(0 \leqslant \tau(A) \leqslant \infty)$ *. Тогда из полунепрерывности τ на $S \cap G$ сверху, т. е.

$$\overline{\lim}_{A' \to A} \tau(A') \leqslant \tau(A) \quad (A \in \overline{S \cap G}), \tag{6}$$

следует как условие Г, так и условие замечания 2. Таким образом, из полунепрерывности т сверху следует утверждение леммы в усиленной замечанием 2 форме.

Отметим, что полунепрерывность функции т снизу есть очевидное следствие непрерывности Т. Отсюда требование (6) эквивалентно тре-

бованию непрерывности т.

Замечание 4. Пусть известно, что если для A_0 и t_0 $T(A_0,t_0) \in \Gamma$, то при всех $t > t_0$ $T(A_0,t) \in G$. Тогда условие Γ , очевидно, выполнено. Если, кроме того, дано, что для любых таких A_0 и t_0 для некоторого $t_1=t_1\,(A_0,t_0)>t_0$ при всех $t\in(t_0,t_1)$ будет $T(A_0,t)\ \overline\in\Gamma$, то выполнено,

очевидно, условие (6) замечания 3.

Замечание 5. Обозначим через $I(S) \subset E_{n+1}^0 - S$ внутренность S. Пусть непрерывное семейство траекторий T(A, t) имеет начальными точками не только $\overline{S \cap G}$, но все $\overline{I(S) \cap G} - O_0 = E$ при выполнении (3). Тогда, если выполнены условия Γ и (4), множество M точек $A \in E$, для которых при всех $t\in [0,\infty)$ $T\left(A,t\right)\in \overline{G}$, при добавлении к нему $O_{\mathbf{0}}$ содержит континуум, соединяющий $O_{\mathbf{0}}$ с S. Если выполнено условие замечания 2, этим же свойством обладает множество точек $A \in E$, для которых при всех $t \in [0,\infty)$ $T(A,t) \in G$. Замечания 3 и 4 также переносятся на этот случай автоматически.

Для доказательства, например, первого утверждения заметим, что $M+O_{\mathbf{0}}$, очевидно, замкнуто. Если бы компонента связности $O_{\mathbf{0}}$ в $M+O_{\mathbf{0}}$ не содержала точек S, то при некотором $\varepsilon>0$ ε -компонента K_{ε} O_0 в $M+O_0$ (см. (4), § 30, стр. 173—174) не содержала бы точек S. Описав около каждой точки $K_{\rm s}$ n-1-мерную сферу достаточно малого радиуса и воспользовавшись теоремой Heine—Borel'я, мы легко нашли бы n-1-мерное конечное многообразие $S'\subset I(S)$, содержащее O_0 внутри себя, с пустым $S' \cap M$. Однако это противоречит лемме.

Аналогично доказываются прочие утверждения замечания 5.

Замечание 6. Лемма с замечаниями 2 — 5 имеет непосредственное приложение в теории устойчивости Ляпунова. Действительно, например, если выполнены все условия леммы, кроме (4), и известно, что для любого A_0 невозможно $T(A_0,t) \in \overline{G} \cap C$ при всех $t \in [0,\infty)$, то из леммы следует, что для некоторых $A_0\in\overline{S\cap G}$ и $t_0>0$ будет

^{*} $\tau(A) = \infty$, если $T(A, t) \in \Gamma$ при всех $t \in [0, \infty)$.

 $\rho(T(A_0,t_0),O_{t_0}) \ge a$. В случае выполнения условий замечания 2 получится дополнительно $A_0 \in S \cap G$. Аналогично замечанию 5 при этом получится, что если траектории начинаются на E, то множество точек $A\in E$, для которых при некотором t(A) будет $\wp(T(A,t(A)),O_{t(A)})\geqslant a$, при добавлении к нему O_0 содержит континуум, соединяющий O_0 с S, и т. д.

Замечания 4 и 5 уточняют теорему К. П. Персидского ((5), стр. 88-91). Из выполнения условия теоремы Н. Г. Четаева ((6), (7), §2), связанного со знаком W' на поверхности W=0, как легко видеть, следует выполнение условия замечания З. Тут этому условию можно дать следующий вид: существует окрестность U множества L всех точек пересечения всех траекторий с Γ и на $U \cap G$ функция W > 0такая, что если $B \in L$, то

$$\lim_{B' \to B, B' \in G} W(B') = 0, \quad \overline{\lim}_{B' \to B, B' \in K \cap G} DW(B') < 0, \tag{7}$$

где под DW понимается любое из производных чисел функции W по t, взятых вдоль траекторий, а K есть множество всех точек всех траекторий (в случае $B \in \overline{K \cap G}$ второе соотношение (7) отпадает). Этот критерий можно применять как для $\overline{S \cap G}$, так и для E. Поступило 27 VII 1946

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. Зейферти В. Трельфалль, Топология, 1938. ² L. Е. J. Вгои wer, Math. Ann., 71:3, 314 (1911). ³ Р. Alexandroff и. Н. Норf, Topologie, Berlin, 1935. ⁴ Ф. Хаусдорф, Теория множеств, 1937. ⁵ К. П. Персидский, Диссертация, МГУ, 1946. ⁶ Н. Г. Четаев, ДАН, 1:9, 529 (1934). ⁷ Н. Г. Четаев, Уч. зап. Казанск. гос. ун-та, 98: 9, 43 (1938).

для томорых при всех ГЕ [0, <) ТТТ. ПЕ С., при поотпетит каким Ов собержит контокум, соединающие С. с. S. Бели, воде меню, уславия