Было исследовано покрытие, в состав которого (по основным компонентам) входили: эпоксидная смола, полиэфирная смола, полиамид, абразивосодержащий наполнитель, отвердитель—пластификатор. В качестве варьируемых параметров были приняты: содержание полиэфирной смолы, наполнителя и отвердителя-пластификатора. Планирование эксперимента по составу покрытия осуществлялось с применением рототабельных планов второго порядка.

Уровни факторов и интервалы варьирования выбраны по результатам предварительных поисковых экспериментов.

Наиболее ярко выраженное влияние на адгезию оказывает пластификатор. Так например, увеличение содержания пластификатора в составе покрытия на 15 мас.ч. приводит к росту адгезии в 4 раза, а уменьшение на 15 мас.ч. к снижению её в 10 раз.

Менее выражено влияние содержание в покрытии полиэфирной смолы и наполнителя на его адгезию к твёрдому сплаву. Кривые этого влияния имеют горбообразный характер.

Сравнение рисунков дифференциально-термического анализа позволяет заключить, что чем больше мас. ч. полиэфирной смолы и наполнителя тем меньше усадка покрытия, а значит ниже внутренние напряжения в нём.

Анализируя полученные данные, можно сделать вывод, что по своим физико-механическим свойствам, разработанные составы соответствуют условиям работы базовых граней спеченных многогранных пластин сборных резцов.

THE IMPACT ANALYSIS ABRASIVE—BEARING FILLING AGENTS COMPOSITION OF THE MATERIAL BASED ON EPOXY-POLYESTER OF RESINES ON ITS DAMPING PROPERTIES

Abstract: On the physical-mechanical properties, designed structures correspond to working conditions of basic edges of sintered polyhedral plates of modular cutters.

М.И. Михайлов, В.А. Шевченко, И.А. Левин

УО «Гомельский государственный технический университет им. П.О. Сухого», Беларусь, e-mail: Michailov@gstu.gomel.by

ИЗНОСОСТОЙКИЕ КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ ДЛЯ ПОКРЫТИЙ НАПРАВЛЯЮЩИХ ПОВЕРХНОСТЕЙ СТАНКОВ, ПРИСПОСОБЛЕНИЙ И ИНСТРУМЕНТОВ

Задача повышения срока службы и надежности базовых деталей металлорежущих станков (MPC), станочных приспособлений и сборных режущих инструментов, является актуальной в машиностроительном производстве, а также при выполнении ремонтных работ по восстановлению изношенных поверхностей.

Условия эксплуатации направляющих скольжения MPC, как правило, обусловлены целым рядом неблагоприятных факторов — дефицитом смазки на открытых поверхностях деталей, присутствием стружки, пыли, абразивных частиц, отсутствием или недостаточной эффективностью устройств для защиты от попадания в зону трения посторонних включений, переменнопрерывистым характером трения в трибосопряжении, при котором чередуются перемещения и остановки, а также воздействием значительных нагрузок динамического и статического характера, вибрациями и т.д. Комплексный характер воздействия вышеуказанных факторов обуславливает сложность взаимодействия поверхностей при трении и существенно сокращает ресурс работы отдельных деталей и узлов MPC.

Одним из наиболее эффективных методов повышения триботехнических характеристик различных узлов машин является нанесение на контактные поверхности износостойких покрытий из композиционных материалов с полимерной матрицей.

Применительно к различным условиям эксплуатации, нагружения и трения, разработаны однокомпонентные и многокомпонентные позволяют составы. которые изготавливать сменные элементы трибосопряжений – планки, вкладыши, подшипники, а также восстанавливать изношенные поверхности деталей МРС нанесением покрытий. При этом работы ПО восстановлению базовых деталей приспособлений могут выполняться как в условиях специализированных производств, так и непосредственно в цехах предприятий.

В настоящее время разработанные композиционные материалы на основе термореактивных полимерных смол, высокодисперсных наполнителей, модификаторов трения и целевых компонентов широко применяются на машиностроительных предприятиях для изготовления направляющих планок станков, подшипников скольжения, в конструкциях элементов сборных режущих инструментов, также при восстановлении изношенных a поверхностей деталей МРС и технологического оборудования различного назначения. При этом обеспечивается полное восстановление геометрических параметров деталей, параметров точности формы и расположения контактных поверхностей, жесткости.

Ресурсные испытания восстановленных деталей в различных узлах MPC показали, что разработанные композиционные материалы имеют высокие технические характеристики, а их составы и технологию формирования

покрытий необходимо оптимизировать в соответствии с конкретными условиями работы для достижения более высоких эксплуатационных параметров.

POLYMER COMPOSITE MATERIALS FOR WEAR PROTECTION COATING USED IN PLAIN SLIDEWAYS OF MACHINING FACILITIES AND TOOLS

Abstract: The polymer compositions for spare parts production for operation in tribounits of machining facilities and recovery of worn-out surfaces by the way of covering deposition are developed.

Ф.Ф. Можейко, И.И. Гончарик, Т.Н. Поткина, А.И. Войтенко

ГНУ «Институт общей и неорганической химии НАН Беларуси» e-mail:secretar@igic.bas-net.by

ИЗУЧЕНИЕ УСТОЙЧИВОСТИ И СТРУКТУРНО-РЕОЛОГИЧЕСКИХ СВОЙСТВ СУСПЕНДИРОВАННЫХ ЖИДКИХ КОМПЛЕКСНЫХ УДОБРЕНИЙ НА ОСНОВЕ АКТИВИРОВАННОЙ ФОСФОРИТНОЙ МУКИ

Нами показано, что при флотационном обогащении белорусских фосфоритов Мстиславльского и Лобковичского месторождений наряду с высококачественным флотоконцентратом в процессе обезвоживания тонкодисперсных фракций – продуктов переработки фосфоритов, образуется высокостабильная суспензия, содержащая фосфоритовую муку. Учитывая высокую стабильность и хорошие структурно—реологические и технологические свойства суспензии, было предложено использовать ее в качестве суспендированных жидких комплексных удобрений (СЖКУ), вводя необходимое количество хлористого калия и азотных удобрений.

Суспензии минеральных удобрений являются грубодисперсными системами, поэтому для придания им гомогенности по всему объему и устойчивости к расслоению в их состав вводят добавки стабилизаторов. В настоящее время самое широкое применение в качестве стабилизаторов суспендированных минеральных удобрений получили различные глинистые минералы. Из них в США практическое применение получили аттапульгитовые глины, обладающие высокой солестойкостью.

В Республике Беларусь отсутствуют месторождения солеустойчивых глин типа аттапульгитовых, не разработаны также научные основы технологии производства СЖКУ. Между тем народнохозяйственная значимость их очевидна. Опыт передовых стран показывает, что применение таких удобрений