А. Г. МАЙЕР

ОБ ОДНОЙ ЗАДАЧЕ БИРКГОФА

(Представлено академиком А. Н. Колмогоровым 18 VIII 1946)

1. В 1928 г. Биркгоф ((1), стр. 269) поставил пробему: построить динамическую задачу с трехмерным замкнутым многообразием состояний таким образом, чтобы порядковое число r центральных движений было>3.

Из приводимой ниже теоремы легко вытекает существование динамических систем, определенных в замкнутом трехмерном многообразии с любым наперед заданным конечным порядковым числом цент-

ральных движений.

į,

2. Теорема. Пусть в n-мерном метрическом пространстве M_m удовлетворяющем второй аксиоме счетности, определена динамическая система D; пусть N траекторий системы D: L_1, L_2, \ldots, L_N таковы, что:

1) при k > N L_k имеет среди своих ω -или α -предельных точек

траекторию L_{k+1} ;

2) L_k не является устойчивой по Пуассону, кроме, может быть, L_N , если L_N замкнута (но L_N не сводится к состоянию равновесия).

Tогда в M_n можно построить динамическую систему D'с по-

рядковым числом центральных движений не меньше N. Доказательство. Пусть P — какая-либо точка на L_N и T>0 какое-либо число, не больше четверти периода L_N , если L_N замкнута. Как известно ((2), теорема 2), можно указать такое $\delta > 0$, что для совокупности дуг $|t| \le T$ траекторий, пересекающих при t = 0 точки о-окрестности P, существует "локальное сечение" Δ^0 (т. е. такое замкнутое в δ (P) и его продолжении по t при $|t| \le T$ множество точек Δ^0 , что каждая указанная дуга пересекает Δ^0 и притом только раз при $|t| \leqslant T$), причем можно считать, что $\Delta^0 < \delta(P)$ и что L_N пересекает Δ^0 лишь в одной точке P.

Будем обозначать через F^0 подмножество точек Δ^0 , принадлежащих дугам $|t| \leqslant T$ траекторий, проходящих при t=0 через точки

множества F.

Пусть, для определенности, каждое L_k имеет L_{k+1} среди своих ω -предельных точек. Обозначим через P_k , m точки пересечения L_k с Δ^0 , нумеруя их в порядке возрастания параметра. Тогда, в силу предположений, множество точек $P_{k, m}$ при постоянном k и любом mсостоит из изолированных точек.

Построим вокруг каждой точки $P_{k,0}$, $1 \le k \le N-1$, окрестность $K_{k,0}$ такую, чтобы $K_{k,0}$ не содержала ни точек $P_{s,m}$, где $s \ge k, m > 0$,

ни точек P_s , $_0$, s < k.

Возьмем произвольное $\eta > 0$. Построим вокруг каждой точки P_k , " $1\leqslant k\leqslant N-1,\ m>0$, окрестность K_{k} , m столь малую, чтобы: а) $k^0{}_{k}$, m не содержала точек P_{k} , $r\neq m$ (и, следовательно, и точек P_{s} , r), s>k) и точек $P_{s,0}$, s< k; б) все траектории, пересекающие K_k , m, нересекали при убывании параметра окрестность P_k , о диаметра $\leqslant \frac{1}{m} \eta$.

Обозначим через $\overline{\Delta}$ множество точек, полученных удалением из $\overline{\Delta^0}$ точек, принадлежащих хоть одному $K^0{}_k$, ${}_m$ $(m \neq 0)$. Построим функцию ϕ (Q), равную нулю в точках $\overline{\Delta}$, положительную в остальных

точках M_n и удовлетворяющую всюду в M_n условию Липшица *. Заменим в D параметр t на параметр t', так что $dt = \varphi(Q) \, dt'$, что сводится к умножению правых частей D на $\varphi(Q)$. Полученная таким образом система D', в которой точки $\overline{\Delta}$ являются состояниями

равновесия, и будет искомой.

Чтобы доказать это, заметим, во-первых, что каждая траектория L_k , $1\leqslant k\leqslant N-1$, распадается в D' на счетное множество траекторий, одна и только одна из которых имеет среди своих о-предельных точек точки $L_{k+1},\ldots,\ L_N.$ Обозначим ее через L_k и докажем, что никакая траектория D', отличная от $L_1,\ldots,\ L_{k-1}$, не имеет L_k сре-

ди своих ω- или α-предельных точек.

В самом деле, каждая такая траектория L' была бы частью траектории L системы D и, следовательно, точка P_h , о тоже была бы предельной для L'. В силу построения D' существует s < k такое, что L' пересекает бесчисленное множество $K_{s_h}^0$, и, следовательно, по условию δ), L' имеет и точку P_s , 0, s < k, своей предельной. Продолжая рассуждение, придем к противоречию, ибо точка $P_{1, 0}$ не может быть предельной ни для какой траектории — $K_{1,\ 0}^{0}$ состоит из состояний равновесия. Точно так же доказывается, что L_k не может входить в замыкание множества траекторий, являющихся предельными хотя бы для одной траектории D'.

Поэтому при выбрасывании всех траекторий, не являющихся предельными для других и не входящих в замыкание множества предельных траекторий, мы выкинем L_1 , оставив L_2,\ldots,L_N . При повторении этого процесса мы только на шаге номера N выкинем L_N , а

потому порядковое число центральных движений будет $\gg N$.

3. Примером системы D в трехмерном многообразии, удовлетворяющей условиям теоремы, является система траекторий, получающаяся при рассмотрении геодезических линий на поверхностях отрицательной кривизны. Именно, вводя символический метод ((1), гл. VIII, § 11) и пользуясь приемом, указанным Морзом и Хедлундом (³), всегда можно для заданной траектории L указать траекторию L^{st} , имеющую L среди своих ω-предельных и неустойчивую по Пуассону. Выделив конечную цепочку таких траекторий любой длины N, применяем к ним построение теоремы.

4. Другие примеры можно получить следующим построением. Построим в заданном многообразии M (скажем — трехмерном евклидовом пространстве) конечную систему кривых L_1, L_2, \ldots, L_N , удовлетворяющую условиям 1) и 2) теоремы, так, чтобы функции dx_1/dt , определенные на множестве точек $L_1 + \ldots + L_N$, удовлетворяли на нем условиям Липшица. Доопределение динамической системы на всем

М совершается с помощью леммы.

Лемма. Пусть на множестве F метрического пространства М задана функция $f_F(P)$, удовлетворяющая условию Липшица вида

$$|f_F(P_1) - f_F(P_2)| \le K\rho (P_1, P_2).$$
 (1)

^{*} Возможность построения такой функции очевидна; ср. также ниже лемму § 4.

Можно построить функцию f(P), определенную всюду на M, совпадающую с $f_F(P)$ на F и удовлетворяющую условию (1). Лемма почти очевидна. Именно, за f(P), где P — любая точка M,

можно взять

$$f(P) = \inf_{Q \in F} \{ f_F(Q) + K \rho(P, Q) \}.$$
 (2)

Существование этой функции f(P) вытекает из очевидного неравенства

 $f_F(Q) + K\rho(P, Q) \geqslant f_{F_o}(Q_1) - K\rho(P, Q_1),$

где Q и Q_1 — любые точки F. Проверка того, что функция f(P), определенная (2), удовлетворяет требованиям леммы, не представляет затруднений.

Поступило 18 VIII 1946

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Дж. Биркгоф, Динамические системы, 1941. ² М. Бебутов, Бюлл. Моск. тос. ун-та, математика, 2, в. 3 (1939). ³ М. Morse and G. Hedlund, Am. J. Mathem., 60, 815 (1938). them., 60, 815 (1938).