Доклады Академии Наук СССР 1947. Том LVII, № 1

MATEMATUKA

Академик С. Н. БЕРНШТЕЙН

О ПРЕДЕЛЬНЫХ ЗАВИСИМОСТЯХ МЕЖДУ КОНСТАНТАМИ ТЕОРИИ НАИЛУЧШЕГО ПРИБЛИЖЕНИЯ

Обозначим через $S_{k,a}(M)$ класс функций f(x) действительной переменной $(-\infty < x < \infty)$, дифференцируемых $k \geqslant 0$ раз, причем

$$|f^{(k)}(x+h) - f^{(k)}(x)| \le Mh^{\alpha} (0 < \alpha \le 1).$$

Очевидно, что если $f(x) \in S_{k, \alpha}(1) = S_{k, \alpha}$, то $Mf(x) \in S_{k, \alpha}(M)$ и $f(\lambda x) \in S_{k, \alpha}(\lambda^{k+\alpha})$. Отсюда следует, что $\frac{1}{\lambda^{k+\alpha}} f(\lambda x) \in S_{k, \alpha}$, т. е. принадлежит тому же классу, что f(x).

Известно и легко проверить, что если $f(x) \in S_{k,\alpha}$, то наилучшее приближение $A_1 f(x)$ посредством целых функций первой степени ограничено, т. е. существует такая постоянная $c_{k,\alpha}$, что

$$A_1 f(x) \leqslant Mc_{k,\alpha} \quad (f(x) \in S_{k,\alpha}(M)).$$

Из сделанного выше замечания заключаем, что при любом $p\!>\!0$

$$A_{p}f(x) = A_{1}f\left(\frac{x}{p}\right) \leqslant \frac{M}{p^{k+\alpha}}c_{k,\alpha} \quad (f(x) \in S_{k,\alpha}(M)), \tag{1}$$

так как $f\left(\frac{x}{p}\right) \in S_{k,\alpha}\left(\frac{M}{p^{k+\alpha}}\right)$. Таким образом, в неравенстве (1) $c_{k,\alpha}$ не зависит от p. В аналогичных неравенствах (которые можно написать a priori)

$$E_n(f(x)) \leqslant \frac{M}{n^{k+\alpha}} c_{k,\alpha,n} \quad (f(x) \in S_{k,\alpha}(M))$$
 (1^{bis})

для наилучшего приближения f(x) многочленами степени n на отрезке (-1,1) и

$$E_n^* f(x) \leqslant \frac{M}{n^{k+\alpha}} d_{k,\alpha,n} \quad (f(x) \in \mathcal{S}_{k,\alpha}(M))$$
 (1^{ter})

периодической функции с периодом 2π тригонометрическими суммами порядка n (n>0 целое число) постоянные $c_{k,\alpha,n}$ и $d_{k,\alpha,n}$, напротив, зависят от n; напомню, что в случае $\alpha=1$ $d_{k,1,n}=c_{k,1}^*\left(\frac{n}{n+1}\right)^{k+1}$, где (3)

$$c_{k,1}^* = \frac{4}{\pi} \sum_{l=0}^{\infty} \frac{(-1)^{lk}}{(2l+1)^{k+2}},$$

так что $\lim_{n=\infty} d_{k,1,n} = c_{k,1}^*$; кроме того, известно (1,2), что при k=0 $\lim_{n=\infty} d_{0,\alpha,n} = \lim_{n=\infty} c_{0,\alpha,n} = c_{0,\alpha}$.

Я хочу показать, что предельное равенство

$$\lim_{n=\infty} d_{k,\alpha,n} = \lim_{n=\infty} c_{k,\alpha,n} = c_{k,\alpha}$$
 (2)

справедливо также при любых $k\!\!>\!\!0,\ 0\!\!<\!\alpha\!\!<\!\!1.$ Действительно, замечая, что $E_n f(x) \!\!=\!\! E_n \left(f\left(\frac{xn}{p}\right); \frac{n}{p} \right)$ и принимая во внимание, что утверждение $f(x) \in S_{k,\alpha}$ равноценно $\left(\frac{p}{n}\right)^{k+\alpha} f\left(\frac{nx}{p}\right) \in S_{k,\alpha}$, из (1^{bis}) заключаем, что для всякой функции $f(x) \in S_{k,\alpha}$ имеем при любом n

$$E_n\left(f(x); \frac{n}{p}\right) \leqslant \frac{c_{k,\alpha,n}}{p^{k+\alpha}},$$
 (3)

так что

$$A_p f(x) = \lim_{n = \infty} E_n \left(f(x); \frac{n}{p+0} \right) \leqslant \frac{1}{p^{k+\alpha}} \lim_{n = \infty} c_{k,\alpha,n},$$

и, вследствие (1),

$$c_{k,\alpha} \leq \lim_{n = \infty} c_{k,\alpha,n}.$$
 (4)

Кроме того, отсюда следует также, что

$$\lim_{n=\infty} E_n\left(f(x); \frac{n}{p+0}\right) \leqslant \frac{c_{k,\alpha}}{p^{k+\alpha}} \quad (f(x) \in S_{k,\alpha}).$$

Поэтому, как бы мало ни было $\epsilon > 0$, для всякой функции (x) $\in S_{k,\alpha}$ можем взять n_0 достаточно большим, чтобы при $n \gg n_0$

$$E_n\left(f(x);\frac{n}{1+\varepsilon}\right) < c_{k,\alpha} + \varepsilon,$$

откуда $c_{k,\alpha,n} < (c_{k,\alpha} + \varepsilon) (1 + \varepsilon)^{k+\alpha}$, т. е

$$\overline{\lim}_{n\to\infty} c_{k,\alpha,n} \leqslant c_{k,\alpha}. \tag{5}$$

Из (4) и (5) следует второе из равенств (2).

Принимая во внимание, что для периодических функций с периодом $2\,n\pi/p$

$$E_n^*\left(f(x); \frac{2n\pi}{p}\right) = E_n^*\left(f\left(\frac{nx}{p}\right)\right) = A_{n+\delta}f\left(\frac{nx}{p}\right) \tag{6}$$

при любом целом n и $0 \leqslant \delta < 1$, заключаем, что

$$d_{k,\alpha,n} \leqslant \left(\frac{n}{n+\delta}\right)^{k+\alpha} c_{k,\alpha} \leqslant c_{k,\alpha} \tag{7}$$

(полагая $d_{k,n,n}=\left(\frac{n}{n+1}\right)^{k+n}c_{k,n,n}^*$, имеем при всяком n даже более сильное неравенство $c_{k,n,n}^* \leqslant c_{k,n}$, которое, однако, нам здесь не понадобится). Нам остается показать, что ни при каком данном $\varepsilon>0$ неравенство

 $d_{k,n,n} \leqslant c_{k,n} - \varepsilon \tag{8}$

не возможно для достаточно больших n. В самом деле, пусть для некоторой функции $f(x) \in \mathcal{S}_{k,\alpha}$

$$A_1 f(x) = c_{k,\alpha} - \frac{1}{2} \varepsilon. \tag{9}$$

В таком случае, принимая во внимание, согласно теореме 5^{bis} (4), что

$$\lim_{L=\infty} E_{n,1}^*(f(x); L; R(x)) = A_1 f(x), \tag{10}$$

если n/L достаточно быстро растет *, подберем периодическую функцию $f_1(x) \in S_{k,\alpha}$ с периодом $2n\pi$, которая равна f(x) при $-L \leqslant x \leqslant L$ и удовлетворяет, как и f(x), неравенству $|f_1(x)| + A_1 f(x) < R(x)$. Если $\Sigma_{n,1}(x)$ есть тригонометрическая сумма n-го порядка (первой степени), наименее уклоняющаяся от $f_1(x)$, так что

$$|f_1(x) - \Sigma_{n,1}(x)| \leq E_n^*(f_1(x); 2n\pi) = E_n^* f_1(nx) \leq d_{k,\alpha,n}$$

то в промежутке (-L, L) имеем также

$$|f(x)-\Sigma_{n,1}(x)| \leqslant d_{k,\alpha,n}$$
,

причем $|\Sigma_{n,1}(x)| < R(x)$ при всех x. Поэтому, вследствие (10) и (9), при достаточно больших n имеем

$$A_1 f(x) = c_{k,\alpha} - \frac{1}{2} \varepsilon < d_{k,\alpha,n} + \frac{1}{4} \varepsilon_n,$$

что было бы невозможно, если бы допущение (8) было справедливо.

В частности, в силу вышеупомянутых значений констант $d_{h,1,n}$, имеем

$$c_{k,1} = \frac{4}{\pi} \sum_{l=0}^{\infty} \frac{(-1)^{lk}}{(2l+1)^{k+2}} \leqslant \frac{\pi}{2} \quad (k=0, 1, \ldots).$$

Поступило 24 IV 1947

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. М. Никольский, ДАН, **52**, № 1 (1946), ² С. Н. Бернштейн, ДАН, **53**, № 7 (1946). ³ Н. И. Ахиезер, Лекции по теории апроксимации, 1940. С. Н. Бернштейн, ДАН, **54**, № 2 (1946).

^{*} Напоминаю, что $E_{n,1}^*$ (f(x); L; R(x)) есть наилучшее приближение f(x) в промежутке (-L, +L) при помощи тригонометрических полиномов n-го порядка $\sum_{n,1}(x)=\sum_{k=0}^n a_k\cos\frac{kx}{n}+b_k\sin\frac{kx}{n}$ периода $2\,n\,\pi>2\,L$, которые при всех x удовлетворяют условию $|\sum_{n,1}(x)|< R(x)$, где R(x)—любая данная четная функция нулевого рода (или многочлен) с неотрицательными коэффициентами.