Доклады Академня. Наук СССР 1945. Ton XLVII, N. 4

MATEMATHEA

Л. ПОНТРЯГИН, член-корреспондент АН СССР

ХАРАКТЕРИСТИЧЕСКИЕ ЦИКЛЫ

В своих работах (1, 2) Whitney ввел понятие расслоенного пространства (Fibre-bundle) и исследовал его, главным образом в случае, когда слоями являются сферы. Моя работа (3) трактует по существу тот же объект, но для частного случая касательных к ориентируемому многообразию. Мои методы сильнее методов Whitney в том смысле, что мною построено больше характеристических циклов, чем это сделано Whitney. В настоящей заметке я показываю, что данные мною методы применимы не только к частному случаю касательных, но и к общему случаю.

Следующие ниже определения 1 и 2 принадлежат Whitney, я

сопровождаю их некоторыми дополнительными замечаниями.

Определение 1. Пусть А — топологическое пространство с заданной в нем топологической группой гомеоморфизмов Γ , B— комплекс, составленный из симплексов T_1, T_2, \ldots , и P— топологическое пространство. Мы будем говорить, что P есть расслоенное пространство или косое произведение A на B, P = P(A, B), если

выполнены следующие условия: 1) Каждой точке $y \in B$ соответствует некоторое подмножество

1) паждои точке $y \in B$ соответствует некоторое подмножество $A_y \in P$, причем различным точкам y и z из B соответствуют непересекающиеся подмножества A_y и A_z .

2) Каждому симплексу T_α поставлено в соответствие некоторое гомеоморфное отображение ξ_α топологического произведения $A \cdot T_\alpha$, т. е. определена функция ξ_{α} $(x, y) = \xi_{\alpha y}$ $(x), x \in A, y \in T_{\alpha}$, причем $\xi_{\alpha y}$ есть гомеоморфное отображение пространства A на A_y .

3) Если $y \in T_{\alpha} \cap T_{\beta}$, то $\xi_{\alpha y}^{-1} \xi_{\beta y} = \eta_{\alpha \beta y} \in \Gamma$, и $\eta_{\alpha \beta y}$ дает непрерывное отображение $T_{\alpha} \cap T_{\beta}$ в группу Γ .

Очевидно, что если $y \in T_{\alpha} \cap T_{\beta} \cap T_{\gamma}$, то

$$\eta_{\alpha\beta\gamma} \quad \eta_{\beta\gamma\gamma} = \eta_{\alpha\gamma\gamma}.$$
 (1)

Предположим, что все симплексы T_1, T_2, \ldots ориентированы, и обозначим через $\epsilon_{\alpha\beta}$ тот коэффициент, с которым симплекс T_{β} входит в границу симплекса T_{α} . Если $\epsilon_{\alpha\beta} \neq 0$, то положим $\eta_{\alpha\beta y} = \zeta_{\alpha\beta y}$. Пусть $\epsilon_{\alpha\beta} \neq 0$, $\epsilon_{\alpha\gamma} \neq 0$, $\epsilon_{\beta5} \neq 0$, $\epsilon_{\gamma6} \neq 0$; тогда из (1) для $y \in T_{\delta}$ следует:

$$\zeta_{\alpha\beta\beta}\zeta_{\beta\beta\gamma} = \zeta_{\alpha\gamma\beta}\zeta_{\gamma\beta\gamma}. \tag{2}$$

Если положить $\Delta_{\Gamma}T_{\alpha}=\sum_{\beta}arepsilon_{lphaeta}arepsilon_{lpha}T_{eta}$, то соотношение (2) записы-

вается в форме:

$$\Delta_{\Gamma} \Delta_{\Gamma} T_{\alpha} = 0.$$

Легко проверяется, что по заданным серу, удовлетворяющим соотношениям (2), однозначно определяются $\eta_{x\beta y}$, удовлетворяющие соотношениям (1). Легко доказывается следующее предложение существования:

A. Пусть A — топологическое пространство с заданной в нем топологической группой гомеоморфизмов Γ , B — комплекс, составленный из симплексов T_1, T_2, \ldots , причем $\Delta T_{\alpha} = \sum_{\epsilon_{\alpha\beta}} T_{\beta}$, и

 $\zeta_{\alpha\beta y} \in \Gamma$, $y \in T_{\beta}$ система непрерывных функций, определенная для тех α , β , для которых $\varepsilon_{\alpha\beta} \neq 0$, удовлетворяющих соотношениям (2). Существует тогда косое произведение P(A, B),

для которого $\xi_{xy}^{-1}\xi_{\beta y}=\zeta_{\alpha\beta y}$. Определение 2. Пусть P(A, B) и P'=P'(A, B) два косых произведения с одинаковой группой Г. Гомеоморфное отображение f пространства P' на пространство P будем называть изоморфным отображением косого произведения P'(A, B) на косое произведение P(A, B), если $f(A'_y) = A_y$ и при $y \in T_\alpha$ имеем $\xi_{\alpha y}^{-1} f \xi'_{\alpha y} = \tau_{\alpha y} \in \Gamma$. Из последнего непосредственно вытекает: для $y \in T_\beta$

$$\zeta_{\alpha\beta\gamma} = \tau_{\alpha\gamma}^{-1} \zeta'_{\alpha\beta\gamma} \tau_{\beta\gamma}. \tag{3}$$

Легко доказывается следующее предложение.

В. Два косых произведения P(A, B) и P'(A, B) с определяющими функциями Саву и Саву тогда и только тогда изоморфны, когда существуют непрерывные функции $\tau_{\alpha y} \in \Gamma$, $y \in T_{\alpha}$, удовлетворяющие

условиям (3).

Whitney отметил, что если P(A, B) есть косое произведение, а f — непрерывное отображение некоторого комплекса C в B, то возникает косое произведение P(A, C, f) A на C с той же группой Γ , что и исходное произведение P(A, B), причем P(A, C, f) определено однозначно с точностью до изоморфизма. Легко доказывается, что если два отображения f и g эквивалентны, то произведения P(A,C,f) и P(A,C,g) изоморфны. Оказывается, однако, что из изоморфизма произведений P(A,C,f) и P(A,C,g) часто следует эквивалентность отображений f и g. Это приводит нас к следующему определению. Определение 3. Косое произведение P(A,B) с группой Γ

будем называть п-мерно универсальным для пространства А с груп-

пой Г, если выполнены следующие условия:

1) Косое произведение P(A, C) с группой Γ , где C имеет размерность не выше n, всегда изоморфно P(A, C, f), где f — непрерывное отображение C в B.

2) Два косых произведения P(A, C, f) и P(A, C, g) изоморфны тогда и только тогда, когда отображения f и g комплекса C в B

эквивалентны.

Определение 4. Сохраняя обозначения определения 3, предположим, что B есть b-мерное ориентированное многообразие и обозначим через z некоторый (b-r)-мерный цикл из B. Пусть f — непрерывное отображение C в B и T — некоторый r-мерный ориентированный симплекс из C. Индекс пересечения f(T) с zобозначим через $u_z^{\ r}(T)$. Легко доказывается, что $u_z^{\ r}$ есть r-мерный abla-цикл из C, класс гомологий которого однозначно определен классом гомологий цикла в и классом отображения f. Таким образом, в силу универсальности P(A, B), ∇ -цикл u_z^r есть инвариант косого произведения P(A, C, f). u_z^r будем называть характеристическим циклом косого произведения P(A, C, f)

Пусть $H_t = H(k, l)$ — многообразие всех k-мерных ориентированных плоскостей (k+l)-мерного евклидова пространства R^{k+l} , проходящих через начало координат в R^{k+l} . За A примем некоторое k-мерное ориентированное евклидово пространство R^k , а за группу Γ — группу всех изометрических отображений R^k на себя, сохраняющих начало координат и ориентацию в R^k . Косое произведение P (R^k , H_l) определим, приняв за точку пространства P пару (R_y^k , x), где $R_y^k \in H_l$, а $x \in R_y^k$; тогдаслоем A_y будет служить множество всех пар (R_y^k , x) с фиксированным R_y^k . Whitney отметил, что $P(R^k, H_2)$ удовлетворяет условию 1) определения 3 при l=n. В теореме 1 я даю другое доказательство

1) определения з при t=n. В теореме і я даю другое доказательство этого предложения, одновременно доказывая универсальность $P(R^k, H_2)$.

Теорема 1. Косое произведение $P(R^k, H_2)$ является (l-1)-мерно универсальным для пространства R^k с группой вращений Γ .

Доказательство. Покажем, что $P(R^k, H_2)$ универсально при достаточно большом l, снижение размерности не представляет затруднений. Пусть C—комплекс, составленный из симплексов T_1, T_2, \ldots, n C^r —подкомплекс комплекса C, составленный из всех симплексов размерности не выше r. Пусть $P(R^k, C)$ некоторое косое симплексов размерности не выше r. Пусть $P\left(R^{k},\,C\right)$ некоторое косое произведение с определяющими функциями $\zeta_{\alpha\beta y} \in \Gamma$, $y \in T_{\beta}$ (см. A). Будем строить непрерывное отображение f комплекса C в H_{t} такое, чтобы $P(R^k, U, f)$ было изоморфно $P(R^k, C)$, $f(y) = \overline{R_y}^k \in H_i$. Одновременно будем строить изометрическое отображение $\xi_{\alpha y},\ y\in T_{\alpha}$ пространства R^k на пространство \overline{R}_y^k так, чтобы $\overline{\xi}_{\alpha y}^{-1}$ $\overline{\xi}_{\beta y} = \zeta_{\alpha \beta y}$. Допустим, что f и $\bar{\xi}_{\alpha y}$ построены для C^r , $f(y) = \bar{R}_y^{\ k} \in \mathbb{R}^{k+1}$ при $y \in C^r$. Будем считать, что R^{k+l} (R^{2k+l} и \overline{R}^k есть ортогональное дополнение R^{k+l} в R^{2k+l} . Пусть T_α произвольный (r+1)-мерный симплекс из C с центром p. Положим $f\left(p\right) =\overline{R}^{k}$ и произвольным образом определим изометрическое отображение ξ_{ap} пространства R^k на \overline{R}^k . Пусть S_{α} — граница симплекса T_{α} , тогда положение точки $z \in T_{\alpha}$ в симплексе T_{α} можно определить парой (y,t), где $y \in S_{\alpha}$, а t — действительный параметр $0 \le t \le \pi/2$, причем (y,0) = p, $(y,\pi/2) = y$, z = (y,t). Пусть T_{eta} — произвольная r-мерная грань симплекса T_{a} , тогда $\overline{\xi}_{eta y}$ определено. Функцию $\bar{\xi}_{\alpha z}$, z=(y,t), $y\in T_{\beta}$, определим, положив

 $\overline{\xi}_{\alpha z}(x) = \overline{\xi}_{\alpha p}(x) \cos(t) + \overline{\xi}_{\beta y}(\zeta_{\alpha \beta y}^{-1}(x)) \sin(t), \quad x \in \mathbb{R}^k.$ (4)

Функцию f определим, положив

$$f(z) = \overline{\xi}_{\beta z}(R^k). \tag{5}$$

Если у одновременно принадлежит к двум г-мерным граням T_{β} и T_{γ} симплекса T_{α} , то полагая $T_{\delta} = T_{\beta} \cap T_{\gamma}$, мы на основании (2) убеждаемся в том, что соотношение (4) одинаково определяет отображение $\xi_{\alpha z}$ независимо от того, используем мы T_{β} или T_{γ} .

Пусть теперь f и g два непрерывных отображения C в H_i такие, что произведения $P(R^k, C, f)$ и $P(R^k, C, g)$ изоморфны; это значит, что существует изометрическое отображение h_v плоскости f(y) на плоскость g(y), непрерывно зависящее от $y \in C$. Пусть $R^{k+1} \subset R^{2k+2l}$, R^{k+1} — ортогональное дополнение R^{k+1} в R^{2k+2l} и φ — некоторое изометрическое отображение R^{k+1} на \bar{R}^{k+1} . Тогда ψg есть некоторое отображение C в H_{k+2l} , изотопное g, ибо φ можно осуществить непрерывным вращением R^{k+l} в R^{2k+2l} . При $x \in f(y)$ положим:

$$\psi_{yt}(x) = \varphi(h_y(x))\cos(t) + x\sin(t), \quad \psi_t(y) = \psi_{ty}(f(y)).$$
 (6)

Очевидно, что $\psi_t(y)$ есть k-мерная плоскость в R^{2k+2l} , и потому ψ_t есть отображение C в H_{k+2l} . Мы имеем из (6) $\varphi_0 = \varphi g$, $\psi_{\pi/2} = f$, а так как g и φg эквивалентны, то f и g эквивалентны в H_{k+2l} . Итак, теорема 1 доказана.

Гомологии в многообразии H(k,l) достаточно изучены в моей работе (3). Для изучения гомотопических свойств H(k, l) полезна:

Теорема 2. При $n \le l-1$ n-мерная гомотопическая группа многообразия H(k, l) изоморфна (n-1)-мерной гомотопической группе многообразия Γ_k , где Γ_k есть группа положительных вращений

к-мерного евклидова пространства.

Доказательство. Так же как в теореме 1, будем вести доказательство для достаточно большого l. Пусть R_0^k и R_1^k —два взаимно ортогональных k-мерных подпространства из R^{k+l} . Будем считать, что группа Γ_k действует в $R_1^{\ k}$ и обозначим через φ некоторое изометрическое отображение $R_1^{\ k}$ на $R_0^{\ k}$. Пусть S^{n-1} —ориентированная (n-1)-мерная сфера и ψ_{ν} — элемент группы Γ_k , непрерывно зависящий от $y\in S^{n-1}$. При $x\in R_1^{-k}$ положим

от $y \in S^{n-1}$. При $x \in R_1^m$ положим $\theta(x, y, t) = \varphi(x) \cos(t) + \psi_y(x) \sin(t)$; $\theta(y, t) = \theta(R_1^k, y, t)$. (7) Очевидно, что $\theta(y, t)$ есть k-мерная плоскость в $R^{k,+l}$, при этом $\theta(y, 0) = R_0^k$, $\theta(y, \pi/2) = R_1^k$. Таким образом $\theta(y, t)$ дает непрерывное отображение прямого произведения $S^{n-1} \cdot T$ в H_t , где T есть отрезок $0 \le t \le \pi/2$. При этом отображении оба основания $S^{n-1} \cdot 0$ и $S^{n-1} \cdot \pi/2$ цилиндра $S^{n-1} \cdot T$ переходят в точки и, следовательно, мы имеем непрерывное отображение сферы S^n в H_t . Оказывается, что так установленное соотротствие межну отображением S^{n-1} в T_t и отображением S^n соответствие между отображением S^{n-1} в Γ_k и отображением S^n в H_I дает изоморфизм соответствующих групп гомотопий. Доказательство проводится примерно так же, как в теореме 1.

Следует отметить, что построение универсальных косых произведений легко может быть проведено для любой компактной группы Ли Γ , так что $P\left(R^k,\ H_2\right)$ отнюдь не является исключением.

> Поступило 9 II 1945

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ H. Whitney, Bull. Am. Math. Soc., **43**, 785 (1937). ² H. Whitney, Proc. Nation. Acad., **26**, 148 (1940). ³ Л. Понтрягин, ДАН, ХХХУ, № 2 (1942).