Е. Н. ГАПОН

ТЕРМОДИНАМИЧЕСКИЕ ЭЛЕКТРОДНЫЕ ПОТЕНЦИАЛЫ

(Представлено академиком В. А. Кистяковским 14 Х 1946)

Проблема отдельных или абсолютных электродных потенциалов — одна из основных проблем в электрохимии. Теория отдельных потенциалов была основана на изучении электрокапиллярных кривых (1). Анализ этого метода привел В. А. Кистяковского (1) еще в 1916 г. к выводу, что "метод изучения" кривой Липпмана" для решения вопроса об отдельных потенциалах должно считать еще недостаточно выясненным". Изучение электрокапиллярных кривых привело также к установлению соответствия между потенциалами нулевого заряда и контактным потенциалом металлов (2). Вычислению электродных потенциалов из спектроскопических и термохимических данных было посвящено несколько работ (3), но они не привели к определенным результатам. В настоящей работе дана теория абсолютных термодинамических электродных потенциалов (ε^0), для вычисления которых использованы исключительно неэлектрохимические данные (спектроскопические и термохимические).

Определим стандартное состояние веществ, участвующих в электрохимической реакции, следующим образом:

$$M(s) \gtrsim M^{+n}(l) + nE^{-}(g),$$

где M, M^{+n} , E — символы "металла, иона и электрона; s, l, g — обозначения твердого, растворенного и газообразного состояния. Температура 25° C, давление 1 атм., активность иона в растворе равна 1.

Для принятого стандартного состояния веществ электрохимической реакции введем следующие обозначения термодинамических функций: ΔH — энтальпия реакции, ΔS^0 — абсолютная энтропия реакции. Тогда свободная энергия электрохимической реакции ΔF^0 и абсолютный термодинамический электродный потенциал ϵ^0 для принятого стандартного состояния определяются уравнениями:

$$\Delta F^0 = \Delta H - T \Delta S^0, \tag{1}$$

$$\varepsilon^0 = \Delta F^0 / nF, \tag{2}$$

где F— постоянная Фарадея, n— валентность иона. Значение ΔH определяется выражением (4):

$$\Delta H = \lambda + \sum_{i} J - (w + H_{M}), \tag{3}$$

где λ — теплота сублимации металла при 0° K, ΣJ — сумма потенциалов ионизации атома при 0° K, w — теплота гидратации иона,

$$H_{M} = \int_{0}^{295} c_{p} dT$$
, где c_{p} — молярная теплоемкость металла.

Теплота сублимации и энтальпия металлов известны из термохимических данных, потенциалы ионизации— из спектроскопических данных. Теплоты гидратации определяются из теплот гидратации солей по Берналу и Фаулеру (5), полагая, что

$$w_{K^{+}} = w_{F^{-}}. \tag{4}$$

Для ΔS^0 имеем:

$$\Delta S^{0} = S_{M}^{+n} + nS_{E^{-}} - S_{M}, \tag{5}$$

где S_M , $S_{M^{+n}}$, S_E — абсолютные энтропии металла, растворенного иона и электронного газа. Энтропии растворенных ионов обычно вычисляются, полагая энтропию H-иона равной нулю:

$$S_{H^+(t)} = 0.$$
 (6)

Для энтропии электронного газа известно два значения: одно, вычисленное по уравнению Закура (6):

$$S_{E}$$
=3,28 кал/моль·1°, (7)

и другое, основанное на применении статистики Ферми (7):

$$S_F = 5,43 \text{ кал/моль} \cdot 1^\circ.$$
 (8)

Так как не существует экспериментальных доказательств преимуществ одной величины перед другой, то взято первое значение.

Указанным путем вычисляются слагаемые уравнения (1) и, далее, по уравнению (2) — термодинамические электродные потенциалы ε^0 . Все необходимые данные приведены в табл. 1 электродных потенциалов. В этой таблице S_{M} и S_{M}^{+n} выражены в кал/моль 1°, остальные—в eV. Несколько величин этой таблицы требуют пояснений.

В колонке H_M в скобках помещено значение энтальпии металла, равное 0,06 eV, когда отсутствует экспериментально определенная величина; в колонке λ для водорода помещено значение теплоты диссоциации: 1) $\frac{1}{2}$ $H_2 \rightarrow H$; для электрода Hg, Hg_2^{++} λ представляет разность между теплотой сублимации и теплотой диссоциации Hg_2 . В колонке J_3 третий потенциал ионизации железа и хрома экстраполирован. В колонке S_M для водорода взята энтропия $^{1}/_2$ моля газообразного H_2 , для ртути — энтропия в жидком состоянии. В колонке $S_{M^{+n}}$ значения, взятые в скобки, вычислены, исходя из зависимости энтропии гидратации ионов от радиуса или из зависимости энтропии растворенных ионов от радиуса (8). Теплоты гидратации ионов по Берналу и Фаулеру (5) вычислены заново с использованием величин сродства электрона к галогену, установленных Майером и Гельмгольцем (9).

Если значения ε^0 , вычисленные по уравнению (2), действительно выражают значения термодинамических электродных потенциалов, то разность ε^0-E^0 должна быть величиной постоянной. Как видно из табл. 1, это и имеет место, причем среднее значение ε^0-E^0 равняется 3,90 V. Следовательно, нулевая точка ряда напряжений, вычисленных из спектроскопических и термохимических данных, лежит на 3,90 V ниже, чем потенциал нормального водородного электрода.

Аналогичным образом можно вычислить термодинамические потенциалы других электрохимических реакций, например:

$$Ag(s) + Cl^{-}(l) \gtrsim AgCl(s) + E^{-}(g)$$

Ê

£... $T \Delta S^{\circ}$ $S_M^{(16)}$ -26,5 (+8) +17,7 +17,54 -6,5 $\begin{array}{c} (-64) \\ (-19) \\ -25,9 \\ -14,8 \\ (-42) \\ (-27) \\ (-30) \\ -4,9 \\ -61 \\ \end{array}$ потенциалы Ţ ٥ электродные 6,05 3,47 3,80 4,08 4,08 117,96 4,95 50,31 22,73 22,00 22,00 22,00 22,00 22,00 22,00 22,15 22,00 22,15 22,17 4,01 117,96 42,5 4,01 117,96 117, æ 9 [33] Js (1. Термодинамические $J_{1}^{(13)}$ 14,97 18,75 15,70 17,89 16,60 16,60 16,84 16,84 17,3 18,13 14,52 14,97 16,5 J1 (9, 18) 5,37 3,88 4,16 4,32 5,19 6,09 6,09 6,74 6,74 6,74 6,74 6,74 7,83 7,83 7,83 7,93 10,39 1,56 0,83 0,93 0,93 1,86 1,186 1,186 1,186 1,186 1,197 1,170 E $H_{M}^{(11)}$ (0,06) (0 +0.34 +0.52 +0.80 +0.80 +0.80E (6, 10) Na, Na⁺

Mg, Mg⁺⁺

Al, Al⁺⁺⁺

An, Mn⁺⁺

Cr, Cr⁺⁺

Cr, Cr⁺⁺

Cd, Cd⁺⁺

In, In⁺⁺

Tl, Tl⁺

Co, Co⁺⁺

Ni, Ni⁺⁺

Pb, Pb⁺⁺

Pb, Pb⁺⁺

Re, Fe⁺⁺

Hg, Hg⁺

Hg, Hg⁺⁺

Ag, Ag⁺

Hg, Hg⁺⁺ Электрод

Система уравнений (1), (2), (3), (5) доказывает принципиальную возможность вычислений абсолютных термодинамических потенциалов электрохимических реакций. Наличие уравнений (4), (6) и (7) не позволяет строго считать величины ϵ^0 абсолютными потенциалами, но, вероятно, они не сильно отличаются от них. Независимо от этого, вычисление термодинамических электродных потенциалов из неэлектрохимических данных представляет известный теоретический интерес.

В заключение выражаю глубокую благодарность акад. В. А. Кистяковскому за ряд ценных замечаний, связанных с выполнением этой

работы.

Поступило 14 X 1946

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. А. Кистяковский, Электрохимия, 2, 369 (1916). ² А. Frumkin u. A. Gorodetzkaya, Z. phys. Chem., 136, 215, 451 (1928); А. Frumkin, Erg. d. exakt. Naturwiss., 7, 235 (1928). ³ N. A. Isgarischew, Z. Elektroch., 32, 281 (1926); Н. А. Изгарышев, Сообшения о научно-технических работах, 24, 263 (1928); Е. Lange u. F. König, Z. Elektrochem., 35, 281 (1926); R. W. Gurney, Ions in solution, 1936; J. A. V. Butler, Elektrocapillarity, 1940. ⁴ Е. Н. Гапон, ЖФХ, 20, 1209 (1946). ⁵ I. D. Bernal and R. H. Fowler, J. Chem. Phys., 1, 515 (1933). ⁶ G. N. Lewis and M. Randall, Thermodynamics and the Free Energy of Chemical Substances, 1923. ⁷ A. C. G. Mitchell, Z. Physik, 50, 574 (1928). ⁸ А. Ф. Капустинский, ДАН, 30, 795 (1941). ⁹ I. E. Mayer u. L. Helmholz, Z. Physik, 75, I (1932). ¹⁰ W. M. Latimer, The Oxidation States of the Elements and their Potentials in Aqueous Solution, 1938. ¹¹ Справочник физических, химических и технологических величин, 7, 275 — 279, 1931. ¹² G. Landolt-Börnstein, Phys. Chem. Tabellen, Eg. III, 2709 — 2723, 1931. ¹³ H. Geiger u. K. Scheel, Handb, Physik, 24, 927, 1932. ¹⁴ B. A. Киреев, ЖФХ, 20, 339 (1946). ¹⁵ R. R. Wenner. Thermochemical Calculations, 350, 1941; Landolt-Börnstein, Phys.-Chem. Tabellen, Eg. III, 2363, 1938.