Доклады Академии Наук СССР 1947. Том LVI, № 1

ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

Академик Г. Г. УРАЗОВ и Д. П. БОГАЦКИЙ

ФИЗИКО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ОКИСЛЕННЫХ ЖЕЛЕЗНО-НИКЕЛЕВЫХ РУД

Исследованию различными современными методами физико-химического анализа были подвергнуты отобранные из промышленных месторождений Среднего и Южного Урала окисленные никелевые руды следующего состава (в $^{0}/_{0}$, см. таблицу).

У фалейская руда представляет собой желто-бурую охристо-

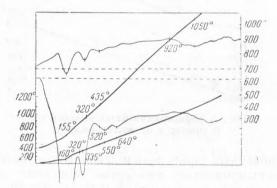


Рис. 1. Термограмма уфалейской руды и процесса ее восстановления

глинистую массу со слабо выраженной сланцеватой структурой и состоит в основном из талька, магнетита, глины и кварца. Никель присутствует в глинистых фракциях, нонтроните, ферригаллуазите и охристом

Наименование руды	Ni	SiO ₂	MgO	Fe	Al ₂ O ₃	CaO	П. п. п.
Уфалейская	1,26	35,34	5,96	21,79	10,49	1,60	13,12
Батамшинская	1,05	37,72	1,63	19,74	8,72	0,99	17,20
Халиловская	0,50	46,31	2,05	20,70	7,70	0,79	13,09

гидрогетите. Явно индивидуализированных никелевых минералов, за исключением редких единичных чешуек непуита, в руде нет. Удельный вес руды 2,50.

Батам шинская руда представлена рыхлой охристой массой темнобурого цвета и состоит в основном из охры и нонтронитизированного серпентинита. Никель присутствует в виде: 1) гарниерита (Ni, Mg) $O \cdot SiO_2 \cdot H_2O$, содержащего закиси никеля до $45^0/_0$; 2) асболана $MnO \cdot MnO_2 \cdot nH_2O + CoO + NiO$, содержащего закиси никеля до $10-12^0/_0$; 3) псиломелан-взда (гидроокислы марганца переменного соста-

ва), содержащего закиси никеля до $20^{\circ}/_{\circ}$; 4) нонтронита 0,5RO (A1, Fe) $_2$ O $_3$ ·3SiO $_2$ ·3H $_2$ O, где R = Mg, Ca, Ni, содержащего закиси никеля до $3-5^{\circ}/_{\circ}$; 5) серпентина 3MgO·2SiO $_2$ ·2H $_2$ O, содержащего закись никеля в адсорбированном виде до $1^{\circ}/_{\circ}$; 6) керолита (Mg.Ni,) О·SiO $_2$ · H_2 O, содержащего до $1^{\circ}/_{\circ}$ адсорбированной закиси никеля; 7) гидроокислы железа Fe $_2$ O $_3$ ·nH $_2$ O, содержащие различные количества адсорбированной закиси никеля. Индивидуализированные никелевые минералы присутствуют в незначительном количестве. Удельный вес руды 2,68.

Халиловская руда принадлежит к типу крайних продуктов разложения серпентинитов и представляет собой нонтронитизированный и частично обохренный серпентинит. Никель присутствует в виде

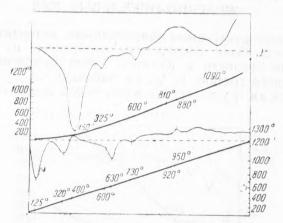
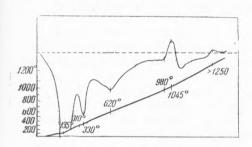


Рис. 2. Термограмма батамшинской руды и процесса ее восстановления

тонко диспергированных гарниерита и празопала, а также в нонтроните. Явно индивидуализированные никелевые минералы присутствуют в крайне незначительном количестве. Удельный вес руды 2,60.


В процессе кальцинации и восстановления уфалейской руды за счет твердого углерода в области температур 100—155° происходит удаление адсорбированной и цеолитной воды гидрогематита, гидрогетита, нонтронита и глины. В интервале 280—400° имеет место процесс разложения моногидрата гетита с последующей рекалесценцией окиси железа (1). При дальнейшем нагревании происходит выделение конституционной воды, после которого начинается постепенное восстановление окиси железа до закись-окиси, практически заканчивающеся при 900—920°. В процессе дальнейшего нагревания смеси руды с твердым углеродом до 1000—1050° происходит восстановление магнетита до закиси железа, восстановление которой интенсивно протекает в области 1050—1070°. Термограмма уфалейской руды и процесса ее восстановления представлена на рис. 1.

В процессе кальцинации и восстановления батамшинской руды за счет твердого углерода в интервале 120—150° в заметной мере происходит удаление адсорбированной и цеолитной воды нонтронитизированного серпентинита и гидроокислов железа. При температурах выше 300—325° имеет место разложение моногидрата гетита (¹) с последующей рекалесценцией окиси железа при 400—420°. В интервале 560—600° происходит удаление конституционной воды серпентина и нонтронита. В области 690—710° (²) обнаруживается начало процесса восстановления окиси железа до закись-окиси, протекающего до 880—900°. В области 930—950° начинается восстановление магнетита до закиси железа, практически заканчивающееся только при 1100—1110°, когда интенсивное развитие получает процесс восстановления

закиси до металлического железа с образованием аустенита (3). Термограмма батамшинской руды и процесса ее восстановления представ-

лены на рис. 2.

В процессе кальцинации и восстановления халиловский руды за счет твердого углерода в области 110—170° происходит удаление адсорбированной и кристаллизационной воды нонтронитизированного серпентинита, а также адсорбированной и цеолитной воды гидрогематита и гидрогетита. В интервалах 360—380° и 520—590° протекают разложение моногидрата гетита и выделение конституционной воды нонтронита и нонтронитизированного серпентинита. При 670-690° обнаруживается процесс восстановления окиси железа до закись-окиси, в основном заканчивающийся в области 830—840°. При температурах порядка 930—940° начинается заметное восстановление магнетита до

1200° 590° 740° 840° 950° tonn 800 . 600 4111 380°

Рис. 3. Термограмма окисленной никелевой руды Халиловского месторождения

Рис. 4. Процесс восстановления халиловской руды

закиси железа, продолжающееся до 1010—1020°, после чего происходит восстановление закиси железа (4-7). Термограммы халиловской руды и процесса ее восстановления представлены на рис. 3 и 4.

Выводы

1. Никель в окисленных железно-никелевых рудах присутствует, главным образом, в виде его окисленных минералов, тонко диспергированных в этих рудах и импрегнирующих различные другие минеральные ингредиенты этих руд.

2. Явно индивидуализированные силикатно-окисленные никелевые минералы присутствуют в исследованных рудах в крайне незначитель-

ных количествах.

3. Поэтому современные методы селективного обогащения в применении к этим рудам эффективными быть не могут, и, следовательно, эти руды должны перерабатываться предложенными ранее специальны-

ми химико-металлургическими методами (8).

4. Исследование поведения окисленных железно-никелевых руд в процессах кальцинации и восстановления, как принципиальной основы предложенных новых методов их химико-металлургической переработки (8), показывает, что восстановление окисленных минералов железа протекает преимущественно по схеме $Fe_2O_3 \rightarrow Fe_3O_4 \rightarrow FeO \rightarrow Fe$ в широких температурных пределах.

5. Это и сравнительное изучение физико-химических условий восстановления окисленных минералов железа $(^{4-6})$ и никеля $(^{8})$ показывают принципиальную возможность селективного восстановления никеля из его окисленных минералов, находящихся в окисленных

железно-никелевых рудах.

Институт общей и неорганической химии Академии Наук СССР

Поступило 24 XII 1946

Институт цветных металлов и золота

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. А. Байков, ЖРФХО, **39**, 660 (1907); Е. Я. Роде, ЖРФХО, **6**, 1443 (1930); **6**, 1453 (1930). ² Г. Г. Уразов, Металлургия никеля, 2-е изд., 1938. ³ Б. В. Старк, Теория металлургич. процессов, 1934. ⁴ М. А. Павлов, Металлургия чугуна, 5-е изд., 1944. ⁵ А. А. Байков, Металлург, 3 (1926). ⁶ Б. В. Старк, Производство губчатого железа, 1933, 43. ⁷ Д. П. Богацкий, Докторск. диссертация, 1945. ⁸ Д. П. Богацкий, Изв. АН СССР, ОТН, **9** (1944); **6** и **12** (1946); **1** (1947).