Доклады Академии Наук СССР 1940. том XXIX, № 8—9

ГЕОЛОГИЯ

г. а. максимович КЛАССИФИКАЦИЯ ВУЛКАНОИДОВ

(Представлено академиком В. А. Обручевым 20 VI 1940)

Прохождение газов с водою с известным давлением через глинистые породы является причиною псевдовулканических явлений или вулканоидов. Газы с водою, захватывая на своем пути отмытые водою глинистые частицы, проявляются по трещинам. Естественно, что количество накапливающихся в результате извержения пелитов тем больше, чем больше газа, чем сильнее его давление и чем значительнее водообильность района. Известную роль играет и тонкость материала отложений на пути газо-

водяной струи.

В земной коре наибольшую роль играют (2) газы химогенные—главным образом, вулканического происхождения и биогенные—газы нефтяных и газовых месторождений и газы, выделяемые морскими, озерными, речными и болотными илами. Некоторое значение имеют и газы технической деятельности человека. Все они, при известных условиях, могут быть причиной образования вулканоидов. Вулканоиды могут образоваться и при сейсмических явлениях. В литературе же обычно принято по Меркалли (15) выделять только грязевые вулканы (vulkani di fango) и термальные грязевые вулканы (vulkanetti di fango termale).

Ниже мы рассмотрим основные разновидности вулканоидов и дадим их классификацию. Термовулканоиды (см. таблицу) связаны с областями магматического вулканизма. Встречаются они в Исландии, Центр. Америке, на о. Целебесе, в Н. Зеландии и в СССР на Камчатке (18), где газ состоит из СО $_2$ (более 80%), N_2 (до 10%) и СН $_4$ (от 1 до 5%).

Техногенные вулканоиды нам приходилось наблюдать на грозненских нефтепромыслах. Над закопанным в глинистых отложениях и парящим паропроводом, в углублениях, заполненных водою или влажной глиной,

наблюдались явления, сходные с грифонами термовулканоидов.

Наибольшее внимание исследователей привлекают вулканоиды, связанные с подземными скоплениями нефти или газа. Из обширной литературы, посвященной им, отметим только работы Ковалевского (°, 10, 11), Губкина и его школы (°, 7, 19), Обручева (17), Архангельского (1), Белоусова (3), Штебера (23), Блюмера (4) и Умбирова (22). Эти вулканоиды расположены полосою, вытянутою почти в широтном направлении, и приурочены в большинстве случаев к нефтяным и газовым месторождениям, связанным с альпийской складчатой зоной. Такие вулканоиды имеются на Малайском архипелаге, Араканских островах, в Бирме, северном Иране, на восточном побережьи Каспия, островах Бакинского архипелага, Апшеронском полуострове и прилегающей части Кавказа, в Грузии, Таманском и Керченском полуостровах, Румынии, Италии, о. Тринидад, Колумбии, США (шт. Айдахо и Тексас). В этих районах вулканоиды характеризуются температурой пелитов, близкой к температуре воздуха, преобладанием углеводородов в составе газа и водами, сходными с нефтяными.

По характеру действия эти вулканоиды могут быть разделены на тектогенные и собственно нафтогенные. Первые приурочены к сильно дислоцированным областям, с перемятыми породами в ядре складок. Это по большей части диапировые структуры. Тектогенные вулканоиды обладают многообразной деятельностью. Происходит выдавливание брекчии. Складкообразующие движения в раздробленных породах ядра периодически закупоривают выход газов. На глубине создается давление. Происходит взрыв с выбрасыванием автокластитов. Это обломки пород ядра от 1—2 сантиметров до нескольких метров в поперечнике. Глыбы размером в 2—3 м мы наблюдали в вулканоиде Ахтарма у ст. Карадаг на Апшероне. Складчатые движения сопровождаются также выдавливанием брекчии и глыб. Эти вулканоиды характеризуются не только эксплозионными явлениями, но и действуют спокойно, выделяя пелиты, сопочную брекчию, воду и газ. Иногда газ самовозгорается и столб пламени усиливает внешнее сходство вулканоидов с магматическими вулканами. Наибольшие накопления материала, естественно, будут у тектогенных вулканоидов. Самые значительные из них, с конусами высотою до 400-500 м, приурочены к району крупнейших в мире нефтяных месторождений Азербайджана, с его километровой нефтегазоводоносной продуктивной толщей и диапировыми структурами. Значительные вулканоиды имеются на Таманском полуострове. На о. Тимор один из конусов достигает высоты в 36 м.

Другие вулканоиды в районах нефтяных месторождений, будучи приурочены к районам разломов, проявляются без взрывов и выдавливания брекчии. В составе их накоплений поэтому нет автокластитов. Они спокойно выделяют сопочную брекчию, пелиты, воду и газ. Такие вулканоиды мы будем, следуя Губкину (7), именовать сальзами. Высота их обычно

4—6 м, достигая иногда до 10, редко 15 м.

Форма эруптивного аппарата разнообразна. Это конусы (простые и сложные) и щитовые образования с грязевым озером (при большом диаметре) или грифоном (грязевым котлом). Высота последнего обычно до 0,5—1 м. Кроме того имеются всевозможные комбинации этих форм, причем у одного и того же сложного вулканоида может быть несколько форм, которые изменяются во времени, в зависимости от характера и обилия извергаемого материала. Щитовые вулканоиды образуются при обилии воды и малом количестве пелитов.

Газы тектогенных и нафтогенных вулканоидов—биогенного происхождения и содержат, главным образом, $\mathrm{CH_4}$, с примесью $\mathrm{CO_2}$, $\mathrm{N_2}$. Иногда наблюдается присутствие небольших количеств $\mathrm{H_2}$ и $\mathrm{H_2S}$. В Азербайджане $\mathrm{CH_4}$ более 90%, $\mathrm{CO_2}$ от 0.1 до 6-7%, остальное обычно составляет азот.

Рассмотренные вулканоиды характеризуются действием глубинных биогенных газов, накапливающихся в приподнятых частях структур со значительных площадей. Поэтому, даже без взрывов и выдавливания брекчии, здесь имеют место значительные накопления пелитов.

Газы современных и четвертичных илов побережной части морей, рек и при особых условиях озер и болот, естественно, не могут давать больших накоплений. Поэтому эти образования почти не привлекали внимания

занимавшихся систематизацией псевдовулканических явлений.

На побережьи Мексиканского залива, в штатах Луизиана и Тексас, на площади в несколько тысяч κ^2 развиты сальзы диаметром в 5-10 и высотою 1-2 м (Gasmounds, Antmounds) (4). Выделяемые этими сальзами газы, по нашему мнению, представляют продукты разложения морских илов. Это—талассогенные вулканоиды. Подобные явления известны на восточном побережьи Каспия, у Чикишляра (Кипящий бугор). Группа сальз извергает здесь грязь, $\mathrm{CH_4}$ с примесью $\mathrm{H_2S}$. Большая часть газа глубинного происхождения, а $\mathrm{H_2S}$ поступает из песков, залегающих на глубинного происхождения, а $\mathrm{H_2S}$ поступает из песков, залегающих на глубинного

бине 6—10 м ниже уровня моря и содержащих остатки водорослей. Эти,

вулканоиды, собственно, смешанного происхождения.

В дельте р. Миссисини окол о Нового Орлеана выделен ие газа (СН $_4$ —86% СО $_2$ —9,41%, N $_2$ —4,39%) вызвало образование небольших сальз (mudlumps springs), извергающих грязь с соленой водой и инфузориями. Это—потамогенные вулканоиды. Газы здесь биогенные. Мы считаем, что они происходят из речных илов (частично и морских), отложившихся в аван-

дельте и затем занесенных речными отложениями.

Особую группу представляют криовулканоиды. Их отметил еще Миддендорф (16). Данные о них имеются у Сукачева (21), Львова (14), Кушева (12 , 13), Лопарева (25) и других. Заслуживает внимания описание Гладцина (5). В районе Доронинского содового озера имеются сальзы высотою до 1,5 м с шириной у основания конуса до 3-5,5 м при ширине кратера до 0,75 м. Образовываются они в марте—апреле, когда зимнее промерзание деятельного слоя, идущее от поверхности к верхней границе вечной мерзлоты, приводит к смыканию горизонтов. Продолжающийся подток воды из более высоко расположенных участков, вследствие грунтового потока, приводит к образованию в пониженных местах, в данном случае по берегам озер, гидролакколитов и криовулканоидов. Мы считаем, что последние образуются там, где имеется большее скопление газов из органических озерных илов [CH, H,S и HF(?)]. Давлением газов прорывается по трещинам вершина мерзлотного бугра и образуется криовулканоид. Он выбрасывает тончайший жидкий ил с содержанием газа. Если давление газа недостаточное, то происходит смерзание бугра в гидролакколит. Протыканием палкой вершины гидролакколита можно превратить его в криовулканоид. По замерам в июле 1929 г. температура ила была: на поверхности $+15^{\circ}$, на глубине $0.2 \text{ м} +4^{\circ}$, на $0.5 \text{ м} +1.5^{\circ}$ и на $1 \text{ м} -0^{\circ}$. Далее шестом прощупывается либо пласт вечной мерзлоты, либо ледяная линза. В районе Хада-Булака трещины, по которым изливается грязь, образовываются за счет льда. Возможно, повидимому, образование криовулканоидов в субаквальных условиях. Аналогичен, повидимому, генезиз криовулканоидов в тундрах. Здесь только органические илы, главным образем, почвенно-болотного происхождения.

Землетрясения вызывают появление сейсмовулканоидов. Это наиболее кратковременно действующие из вулканоидов. Такие явления наблюдались в Квито 4 II 1797 г. (*), на побережьи Коринфского залива 26 XII 1861 г. (*), в долине р. Савы 9 XII 1880 г., на берегу оз. Иссык-Куль 28 V 1887 г., при Калифорнийском землетрясении 1906 г. (*). По трещинам, образовавшимся при землетрясении, по большей части в местах их пересечения или там, где они достигают максимальной величины, образовались вулканоиды. Наибольшие конусы образовались в Ахайе (*), где высота их достигала 5 м, при диаметре основания 20 м и угле наклона 20°. Диаметр кратеро-

видных углублений (одного или нескольких) — до 1 м.

Сейсмовулканоиды проявляются по большей части в аллювиальных, реже озерных, отложениях. При перечисленных выше землетрясениях выброшенный песок и глина образовывали аккумулятивные формы в виде конусов. Иногда, как в Ассаме 12 VI 1897 г. (24), после выбросов песка с водою образовываются воронкообразные углубления.

Появление сейсмовулканоидов обусловлено, главным образом, механическим действием сейсмической волны. Происходят разрывы на поверхности, сжатие нижележащих водоносных пород и выдавливание жидких

масс-воды с песком или глиной.

Некоторую роль играет и газ, выделяющийся из речных или озерных илов. Выделение H₂S отмечено при извержениях вулканоидов в Ахайе, в долине р. Савы, на берегу оз. Иссык-Куль. Вероятно, выделялся и СН₄,

Тип		1				
	Класс	Происхож-	Основные составные части	Температура грязи		
Термовулка- ноиды	Пирогенные	Химическ. (вулкани- ческий)	CO ₂ , N ₂ , CH ₄ , H ₂ , H ₂ S	до 95°		
	Техногенные	Техноген-	Пар водяной	до 95°		
Вулканоиды (собственно)	Тектогенные	Биогенный		Близкая к температуре воздуха		
	Нафтогенные	глубинный	CH ₄ , CO ₂ , N ₂			
	Талассогенные	ısıř	CH ₄ , H ₂ S	ая к темг воздуха		
	Потамогенные	хност	CH ₄ , CO ₂ , N ₂	Близк		
Криовулканоиды	Гелогенные	Биогенный поверхностный	CH ₄ , H ₂ S	Близкая к 0°		
	Лимногенные	генны	CH ₄ , H ₂ S, HF(?)	На глубине 1 м 0°		
Сейсмовулка- ноиды	Сейсмогенные	Био	CH ₄ (?), H ₂ S	Близкая к <i>Т</i> воздуха		

но в обстановке землетрясений это осталось не отмеченным. Сероводород был замечен по своему резкому запаху. Сейсмовулканоиды отличаются от других типов действием, в основном, под влиянием гидравлических ударов и выбрасыванием песка. Роль газа, повидимому, второстепенна.

Часто газовыми вулканоидами являются пирогенные, техногенные, талассогенные, потамогенные и нафтогенные. Тектогенные, крио- и сейсмогенные вулканоиды относятся к сложным, так как образование их обусловлено не только движением газа с водою, но и какой-либо другой силой (тектонической, сейсмической, льдом).

Государственный университет г. Молотов

Поступило 21 VI 1940

цитированная литература

¹ А. Д. Архангельский, Бюлл. Моск. об-ва исп. прир., отд. геол., VIII, вып. 3—5 (1925). ² В. В. Белоусов, Очерки геохимии природных газов (1937). ³ В. В. Белоусов и Л. А. Яроцкий, Тр. гелиогазразведки, вып. 8 (1936). ⁴ Е. В I и mer, Die Erdöllagerstätten, St. (1922). ⁵ Н. И. Гладцини А.И.Дзенс-Литовский, Изв. Геогр. об-ва, LXVIII, вып. IV (1936). ⁶ И. М. Губкин, Тектоника юго-вост. окончания Кавказа в связис нефтеносностью в этой области (1934). ⁷ И. М. Губкин и С. Ф. Федоров, Грязевые вулканы Советского

Основная причина действия вулканоидов Газы, поднимающиеся по трещинам		Харак- тер дей- ствия		Морфология эруптивного аппарата			высота	Твердые про- дукты извер- жения			
		- спокойное пе-	Ко-		Щи-		альная в м	ститы	Я		
			слож-	простой	грязевое	грифон	Максимальная конуса в м	Автокластиты	Сопочная брекчия	Пелиты	Песок
				+	+	+	6			+	
Водяной пар, поднимающийся через разжиженную глину		+				+	0,2			+	
Тектонические движения и дей- ствие нефтяного газа		+	+	+	+	+	500	+	+	+	
Нефтяные газы, поднимающиеся по трещинам		+		+		+	15		+	+	
Действие биогенных (иловых) газов		+		+			2			+	
Действие биогенных (иловых) газов		+		+			2			+	
Сжатие при переходе воды в лед при подтоке воды и некотором участии газа		+		+		+	0,7			+	
		+		+			1,5			+	
Сейсмические волны при некотором участии газа		+		+		+	5	100		+	1

Союза и их связь с генезисом нефтяных месторождений Крымско-Кавказской геологической провинции, Тр. ИГИ АН СССР, стр. 44 (1938). ⁸ В. G u t e n b e r g, Grundlagen der Erdbebenkunde (1927). ⁹ С. А. Ковалевский, Азерб. нефт. хоз., № 6—7, 8—9, 10, 11, 12 (1927). ¹⁰ С. А. Ковалевский, Азерб. нефт. хоз., № 1, 2 (1928). ¹¹ С. А. Ковалевский, Газовый вулканизм, Баку (1935). ¹² С. Л. Кушев, Сб. инструкций и програм. указаний по изучению мерзлых грунтов и вечной мерзлоты (1938). ¹³ С. Л. Кушев, Тр. ком. по вечн. мерзлоте, т. VIII (1939). ¹⁴ А. В. Львов, Поиски и испытания водоисточн. водоснабж. на зап. части Амурской ж. д. в условиях вечной мерзлоты почвы (1916). ¹⁵ G. Мегсаlli, I Vulcani attivi della Terra, Milano (1907). ¹⁶ Л. Миддендорф, Путешествие на север и восток Сибири, IV (1868—1878). ¹⁷ В. А. Обручев, Керченско-Таманский нефтеносный район (1926). ¹⁸ Б. И. Пийп, Термальные ключи Камчатки, Тр. СОПС АН, сер. Камчатская, вып. 2 (1937). ¹⁹ Результ. исслед. грязевых вулканов Крымско-Кавказской геолог. провинции (1939). ²⁰ Л. Schmidt, Studien über Erdbeben L. (1879). ²¹ В. И. Сукачев, Изв. Акад. Наук (1911). ²² Л. Н. F. U mbyrove, Bull. Ам. Ass. Petrol. Geol., 21, 1 (1938). ²³ Э. Штебер, Изв. Екатериносл. горн. ин-та, 10, вып. 1 (1914). ²⁴ С. Davison, Great Earthquakes L. (1936). ²⁵ Н. Г. Лопарев и Н. И. Толстихин, Изв. Геогр. об-ва, 71, вып. 9 (1939).

^{*} В субаквальных условиях проявляются тектогенные, нафтогенные (?), потамогенные и лимногенные вулканоиды. Возможно проявление талассогенных.