Доклады Академии Наук СССР 1940. Tom XXIX, № 5-6

MATEMATUKA

м. крейн

об одном специальном кольце функции

(Представлено академиком А. Н. Колмогоровым 5 ІХ 1940)

Впервые N. Wiener (1), а затем R. Cameron (2), H. Pitt (3) и N. Wiener и Н. Pitt (4) доказали ряд интересных теорем, касающихся абсолютно сходящихся тригонометрических сумм и интегралов Фурье. Сравнительно недавно И. М. Гельфанд, отправляясь от разработанной им теории нормированных колец (5), предложил очень простой и вместе с тем глубокий метод для доказательства теорем такого типа (6).

В настоящей заметке мы строим одно кольцо, до сих пор не изучавшееся, и доказываем для него, используя метод И. М. Гельфанда (б), теоремы (см. теоремы 3, 4), примыкающие к результатам цитированных авторов. Эти теоремы позволят нам в следующих заметках обобщить первоначальные классические теоремы N. Wiener'a (1) на случай почтипериодических функций на произвольной топологической группе и установить ряд новых свойств топологических групп с достаточным количеством почти-периодических функций.

§ 1. Пусть Q—некоторое топологическое множество. Как известно, функция $\Phi(s,t)$ от двух произвольных точек $s\in Q$ и $t\in Q$, принимающая вещественные или комплексные значения, называется эрмитовым ядром на Q, если $\Phi(s, t) = \overline{\Phi(t, s)}$ $(s, t \in Q)$. Если, кроме того, при любых $s_1 \in Q$, ..., $s_n \in Q$ и комплексных ξ_1 , ..., ξ_n (n = 1, 2, ...) выполняется неравенство

$$\sum_{j,k=1}^{n} \Phi\left(s_{j}, s_{k}\right) \xi_{j} \bar{\xi}_{k} \geqslant 0, \tag{1}$$

 $\Phi\left(s,\,t
ight)$ называется *эрмитово-положительным* (э. п.) ядром на Q.Обозначим через P_{Q} совокупность всех ограниченных непрерывных э. п. ядер $\Phi\left(s,\,t\right)$, а через R_Q линейную комплексную оболочку множества P_Q . Очевидно, некоторая функция $\Phi\left(s,\,t\right)$ принадлежит R_Q , если каждая из ее эрмитовых компонент

$$\Phi^{+}\left(s,\;t\right)=\frac{1}{2}\;\left\{\Phi\left(s,\;t\right)+\overline{\Phi\left(t,\;s\right)}\right\},\quad\Phi^{-}\left(s,\;t\right)=\frac{1}{2i}\;\;\left\{\Phi\left(s,\;t\right)-\overline{\Phi\left(t,\;s\right)}\right\}$$

представима в виде разности двух функций из P_{Q} .

Так как в силу известной алгебраической теоремы III ура произведение двух функций из P_Q снова принадлежит P_Q , то R_Q —кольцо. Введем в кольце R_Q норму $\|\Phi\|$. Если $\Phi \in P_Q$, то положим

$$||\Phi|| = \sup_{s \in Q} \Phi(s, s); \tag{2}$$

если же Φ — произвольное эрмитово ядро из R_{Q} , то положим

$$\|\Phi\| = \inf\{\|\Phi'\| + \|\Phi''\|\},\tag{3}$$

где infimum распространяется на любые пары $\Phi', \Phi'' \in P_Q$ такие, что

Если $\Phi \in P_Q$, то, как следует из рассмотрения неравенства (1) при $n=1,\,2,\,$ имеем $\Phi (s,\,s)\geqslant 0,\, |\Phi (s,\,t)|^2\leqslant \Phi (s,\,s)\,\Phi \cdot (t,\,t)$ $(s,\,t\in Q).$ Отсюда не трудно заключить, что если $\Phi \in R_Q$ — эрмитово ядро, то

(4) $|\Phi(s, t)| \leq ||\Phi||$.

Для произвольного ядра Ф ∈ R положим

$$\|\Phi\| = \sup_{0 \le \alpha \le 2\pi} \|\Phi^{+} \cos \alpha + \Phi^{-} \sin \alpha\|, \qquad (5)$$

где Φ^+ и Φ^- — эрмитовы компоненты ядра Φ . Легко видеть, что определенная таким образом норма обладает следующими свойствами: 1° $\|\Phi\| > 0$, если $\Phi \equiv 0$; 2° $\|\lambda\Phi\| = |\lambda| \|\Phi\|$ (λ — комплексное число); 3° $\|\Phi + \Psi\| \le \|\Phi\| + \|\Psi\|$ (Φ , $\Psi \in R_Q$) и, кроме того,

$$4^{\circ} \parallel \Phi \Psi \parallel \leq \sqrt{2} \parallel \Phi \parallel \cdot \parallel \Psi \parallel \quad (\Phi, \Psi \in R_Q).$$

Имеет место

 ${
m T}$ еорема 1. Кольцо $R_{
m Q}$ полно по введенной норме $\|\Phi\|^*.$

§ 2. Обозначим через C_s (соответственно C_t) совокупности всех функций из R_Q , зависящих только от s (соответственно только от t). Покажем, что C_s , равно как и C_t , состоит из всех ограниченных непрерывных функций на Q. Действительно, пусть, например, $\varphi(s)$ $(s \in Q)$ —произвольная непрерывная ограниченная функция. Полагая $\varphi(s,t)$ $\equiv \varphi(s)$ $(s, t \in Q)$, получим:

$$\varphi^{+}(s, t) = \frac{1}{2} \left\{ \varphi(s) + \overline{\varphi(t)} \right\} = \frac{\left[\mu + \varphi(s)\right] \left[\mu + \overline{\varphi(t)}\right]}{4\mu} - \frac{\left[\mu - \varphi(s)\right] \left[\mu - \overline{\varphi(t)}\right]}{4\mu} ,$$

$$\varphi^{-}(s, t) = \frac{1}{2i} \left\{ \varphi(s) - \overline{\varphi(t)} \right\} = \frac{\left[\varphi(s) + \mu i\right] \left[\overline{\varphi(t)} - \mu i\right)}{4\mu} - \frac{\left[\varphi(s) - \mu i\right] \left[\overline{\varphi(t)} + \mu i\right]}{4\mu} .$$

$$(10)$$

Так как при $\mu>0$ каждая из дробей, будучи вида $\psi(s)\,\overline{\psi(t)},$ принадлежит к P_Q , то $\varphi(s,\,t)$ \equiv $\varphi(s)$ принадлежит кольцу R_Q , что и требовалось доказать. Заметим, что из (10) вытекает также неравенство

$$\|\varphi\| \le \|\varphi^{+}(s, t)\| + \|\varphi^{-}(s, t)\| \le \frac{[\mu^{2} + \sup |\varphi(s)|^{2}]}{\mu}$$

 $\|\phi\|\leqslant\|\phi^{+}(s,\,t)\|+\|\phi^{-}(s,\,t)\|\leqslant\frac{[\mu^{2}+\sup|\phi(s)|^{2}}{\mu}.$ Полагая здесь $\mu=\sup|\phi(s)|,$ найдем $\|\phi(s)\|\leqslant2\sup_{s\in Q}|\phi(s)|.$ Так как,

с другой стороны, в силу (4) и (5)

$$\begin{aligned} | \varphi(s) | &= | \varphi^{+}(s, t) + i \varphi^{-}(s, t) | \leq | \varphi^{+}(s, t) | + \\ &+ | \varphi^{-}(s, t) | \leq | | \varphi^{+} | + | | | \varphi^{-} | | \leq 2 | | | \varphi | |, \end{aligned}$$

то окончательно

$$\frac{1}{2}\sup_{s\in Q}|\varphi(s)| \leq \|\varphi\| \leq 4\sup_{s\in Q}|\varphi(s)|. \tag{11}$$

Следовательно, в C_s норма $\|\phi\|$ топологически эквивалентна равномер-

ной норме $\|\varphi\|_u = \sup |\varphi(s)|$.

§ 3. Начиная с этого параграфа, мы будем всегда предполагать (если только не оговорено противное), что Q-компактное метрическое множество.

 ${
m B}$ этом случае всегда существует линейный функционал $M\left\{ arphi
ight\} ,$ определенный на всех $\varphi \in C_t$ и удовлетворяющий условиям:

$$M\{1\} = 1, M\{\varphi\} > 0, \text{ ecan } \varphi(t) \ge , \equiv 0 \ (t \in Q).$$
 (12)

^{*} Доказательство теоремы из-за недостатка места опускается.

Чтобы построить такой функционал, достаточно взять какую-либо плотную в Q последовательность $\{t_j\}$ и произвольно последовательность положительных чисел m_j $(j=1,\,2,\,\dots)$ с суммой, равной 1, и затем положить

$$M\left\{ \mathbf{\varphi}
ight\} =\sum_{j=1}^{\infty}m_{j}\,\mathbf{\varphi}\left(t_{j}
ight).$$

Пусть M $\{\varphi\}$ — какой-либо линейный функционал в C_t , удовлетворяющий условиям (12), а $\Phi(s,t)$ — произвольное непрерывное эрмитово ядро на Q. Тогда к уравнению

$$\varphi(s) = \lambda M_{t} \{\Phi(s, t) \varphi(t)\}$$
(13)

приложима теория Гильберта-Шмидта обыкновенных интегральных уравнений с эрмитовым ядром. В частности, если $\Phi(s,t) \in P_Q$, то имеет место теорема Мерсера, т. е. ядро $\Phi(s,t)$ разлагается в равномерно сходящийся ряд:

$$\Phi\left(s,\,t\right) = \sum_{k} \frac{\varphi_{k}\left(s\right)\overline{\varphi_{k}\left(t\right)}}{\lambda_{k}}\,,\tag{14}$$

где $\{\varphi_k\}$ — полная ортонормированная * система фундаментальных функций, а $\{\lambda_k\}$ $(\lambda_k>0,\ k=1,\ 2,\ \ldots)$ — соответствующая последовательность характеристических чисел уравнения (13).

Из (14) вытекает, что

$$\sum \frac{1}{\lambda_{k}} \doteq M_{t} \left\{ \Phi\left(t, t\right) \leqslant \sup_{t \in Q} \Phi\left(t, t\right) \right\} = \|\Phi\|.$$

Оказывается, что для произвольного эрмитова ядра $\Phi(s,t) \in R_Q$ имеет место неравенство

$$\sum \frac{1}{|\lambda_k|} \le \|\Phi\|, \tag{15}$$

где $\{\lambda_k\}$ — полная последовательность характеристических чисел уравнения (13). Действительно, если $\Phi = \Phi^{(1)} - \Phi^{(2)}$, где $\Phi^{(1)}$, $\Phi^{(2)} \in P_Q$, то при любой функции $\varphi \in C_t$ имеем:

$$- \underset{s}{MM} \left\{ \Phi^{(2)}\left(s, t\right) \varphi\left(s\right) \varphi\left(t\right) \right\} \leqslant \underset{s}{MM} \left\{ \Phi\left(s, t\right) \varphi\left(s\right) \varphi\left(t\right) \right\} \leqslant$$
$$\leqslant \underset{s}{MM} \left\{ \Phi^{(1)}\left(s, t\right) \varphi\left(s\right) \varphi\left(t\right) \right\}. \tag{16}$$

Пусть $\rho_1\leqslant\rho_2\leqslant\ldots$ —все положительные, а $\tau_1\geqslant\tau_2\geqslant\ldots$ —все отрицательные характеристические числа ядра $\Phi\left(s,\,t\right)$; пусть, кроме того, $\lambda_1^{(i)}\leqslant\lambda_2^{(i)}\leqslant\ldots$ —характеристические числа ядра $\Phi^{(i)}\left(s,\,t\right)$ $(i=1,\,2)$. Тогда из (16) следует, что

$$\rho_j \geqslant \lambda_j^{(1)}, \quad -\tau_j = |\tau_j| \geqslant \lambda_j^{(2)} \quad (j = 1, 2, \ldots),$$

откуда

$$\sum \frac{1}{|\lambda_j|} = \sum \frac{1}{\varrho_j} + \sum \frac{1}{|\tau_j|} \leqslant \sum \frac{1}{\lambda_j^{(1)}} + \sum \frac{1}{\lambda_j^{(2)}} \leqslant \|\Phi^{(1)}\| + \|\Phi^{(2)}\|\,,$$

что и показывает (15)

§ 4. В этом параграфе нам придется многократно опираться на результаты И. М. Гельфанда по теории нормированных колец.

Tеорема 2. Всякий максимальный идеал J кольца R_Q состоит из всех функций из $R_{
m Q}$, обращающихся в нуль в некоторой точке $s=s_{
m o}$,

 $t=t_{o}$. Доказательство. По теореме Гельфанда [см. (5), теорема 3] кольцо вычетов R_{Q}/J есть тело комплексных чисел. Пусть $\Phi \in R_{Q}$; обозначим через $F(\Phi)$ то комплексное число, которое соответствует Φ при гомоморфизме $R_Q \sim R_Q/J$. Тогда $F\left(\Phi\right)$ $\left(\Phi \in R_Q\right)$ — линейный мультипликативный функционал в R_Q .

пликативный функционал в R_Q . Рассмотрим подкольцо $C_s \subset R_Q$. Так как C_s есть кольцо всех непрерывных функций $\varphi(s)$ ($s \in Q$), то в нем по теореме Stone'а (7) мультипликативный линейный функционал имеет вид: $F(\varphi) = \varphi(s_0)$ ($\varphi \in C_s$), где $s_0 \in Q$ — некоторая фиксированная точка. Аналогично в $C_t : F(\varphi) = \varphi(t_0)$ ($\varphi \in C_t$), где $t_0 \in Q$ — некоторая фиксированная точка. Пусть теперь $\Phi(s,t)$ — произвольная функция из P_Q . Тогда имеет место разложение (14), в силу которого при $n \to \infty$

$$\left\|\Phi\left(s,\,t\right)-\sum_{1}^{n}\frac{\varphi_{k}\left(s\right)\overline{\varphi_{k}\left(t\right)}}{\lambda_{k}}\right\|=\left\|\sum_{k=n+1}^{\infty}\frac{\varphi_{k}\left(s\right)\overline{\varphi_{k}\left(t\right)}}{\lambda_{k}}\right\|=\sup_{s\in Q}\sum_{k=n+1}^{\infty}\frac{|\varphi_{k}\left(s\right)|^{2}}{\lambda_{k}}\rightarrow0.$$

Отсюда, так как $F(\Phi)$ — непрерывный функционал,

$$F(\Phi) = \lim_{n \to \infty} F\left[\sum_{1}^{n} \frac{\varphi_{k}(s) \overline{\varphi_{k}(t)}}{\lambda_{k}}\right] = \lim_{n \to \infty} \sum_{1}^{n} \frac{F\left[\varphi_{k}(s)\right] \cdot F\left[\overline{\varphi_{k}(t)}\right]}{\lambda_{k}} = \lim_{n \to \infty} \sum_{1}^{n} \frac{\varphi_{k}(s_{0}) \overline{\varphi_{k}(t_{0})}}{\lambda_{k}} = \Phi\left(s_{0}, t_{0}\right).$$

Так как R_Q есть линейная оболочка P_Q , то при любом $\Phi \in R_Q : F(\Phi) =$ $=\Phi\left(s_{\scriptscriptstyle 0}\,,\,t_{\scriptscriptstyle 0}
ight)$. Припоминая, что J есть гиперплоскость, определяемая уравнением $F(\Phi) = 0$, приходим к теореме 3.

Теорема 3. Если $\Phi \in R_Q$, то и $f(\Phi) \in R_Q$, где f(z)—любая аналитическая функция, голоморфная на множестве значений $z = \Phi(s,t)$

Доказательство *. Рассмотрим сперва тот частный случай теоремы, когда $F\left(z\right)=rac{1}{z}$. Итак, пусть $\Phi\left(s,\,t\right)\in R_{Q}$ и $\Phi\left(s,\,t\right)\neq0$ при любых $s,\,t\in Q$; докажем, что $1/\Phi\in R_Q$. Допустим противное и рассмотрим совокупность $J_{\mathfrak{o}}$ всех произведений $\Phi\left(s,\,t\right)\Psi\left(s,\,t\right)$, где Ψ пробегает все $R_Q\left(J_0\!=\!\Phi\cdot R_Q
ight)$. Так как $1/\Phi\,\overline{\in}\,R_Q\,,$ то J_0 —некоторый нетривиальный идеал $(J_0 \pm R_0)$. Но всякий нетривиальный идеал заключается в некотором максимальном идеале [см. (5), теорему 2]. Следовательно, по теореме 2 все функции из J_0 обращаются в нуль в некоторой точке $s=s_0$, $t=t_0$. Так как $\Phi(s,t)\cdot 1\in J_0$, то и $\Phi(s_0,t_0)=0$. Мы пришли к проти-

Вернемся теперь к общему случаю теоремы 2. Так как функция $f\left(z\right)$ — регулярна на замкнутом множестве E значений $z=\Phi\left(s,t
ight)$ $(s,\,t\in\hat{Q}),$ то найдется такой сложный спрямляемый контур I', который лежит целиком в области регулярности и который содержит внутри

себя множество Е. Тогда по теореме Коши

$$f\left(\Phi\left(s,\,t\right)\right) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f\left(\zeta\right)}{\zeta - \Phi\left(s,\,t\right)} d\zeta \quad \left(s,\,t \in Q\right).$$

Издагаемый ниже замечательный способ доказательства теоремы 3 принадлежит И. М. Гельфанду. Первая часть рассуждения заимствована из его работы (6), вторая часть была сообщена автору И. М. Гельфандом через Б. Я. Левина.

По доказанному ранее при $\zeta \in \Gamma$ функция $\Psi_{\zeta} = [\zeta - \Phi]^{-1} \in R_{Q}$. Легко видеть, что Ч д непрерывно по норме от СЕГ, т. е.

 $\|\Psi_{\zeta} - \Psi_{\zeta_n}\| \to 0 \text{ при } \zeta_n \to \zeta.$

Но тогда, рассматривая Ψ_{ζ} , как абстрактную функцию от $\zeta \in \Gamma$ со значениями из пространства R_Q , мы без труда докажем, что в пространстве R_{O} существует интеграл

 $X = \frac{1}{2\pi i} \oint_{\Sigma} \Psi_{\zeta} f(\zeta) d\zeta.$

Так как в силу (4) сходимость по норме последовательности элементов из R_Q влечет их сходимость как функций от s и t, то $X=f(\Phi\left(s,t
ight)).$ Теорема доказана.

§ 5. Теперь нам понадобится следующая

Пемма*. Пусть В—некоторое хаусдорфово бикомпактное множество, а R-некоторое подкольцо кольца всех непрерывных функций на В, обладающее следующими свойствами:

1° ecnu $\varphi \in R$, mo $u \varphi \in R$,

 2° если $\varphi \in R$ и $\varphi(s) > 0$ $(s \in B)$, то $\frac{1}{\varphi} \in R$,

 $3^{\rm o}$ для каждой точки $s_{\rm o}$ \in B и любой ее окрестности $U_{\rm o}$ найдется

финкция $\varphi \in R$ такая, что $\varphi(s_0) \neq 0$ и $\varphi(s) = 0$ при $s \in U$.

Tогда для того, чтобы некоторая функция $\psi(s)$ $(s \in B)$ принадлежала $R,\;$ достаточно, чтобы она «локально принадлежала R», т. е. чтобы для всякой точки $s_{\scriptscriptstyle 0}\!\in\! B$ нашлась такая ee окрестность $U_{\scriptscriptstyle 0}$ и функция $\varphi_0 \in R$, $umo \ \psi(s) = \varphi_0(s) \ npu \ s \in U_0$.

Доказательство этой леммы мы приведем в следующей заметке. Теорема 4. Для того чтобы некоторое ядро $\Phi(s,t)$ $(s,t\in Q)$ принадлежало кольцу R_{Q} , достаточно, чтобы для каждой точки $(s_{\scriptscriptstyle 0}\,,\,t_{\scriptscriptstyle 0})$ \in $Q^{\scriptscriptstyle (2)}\,$ $(Q^{\scriptscriptstyle (2)}=Q\times Q-mono$ пологический квадрат Q) нашлась такая окрестность $U \subset Q^{(2)}$ этой точки и ядро $\Phi_{\mathbf{0}} \in R$, чтобы $\Phi\left(s,\,t\right) = \Phi_{\mathbf{0}}\left(s,\,t\right)$

 $npu(s,t) \in U$.

Доказательство. Действительно, R является некоторым кольцом непрерывных функций на компактном метрическом множестве $Q^{(2)}$ и для этого кольца выполняются все 3 условия предыдущей леммы, а именно: условие 1° в силу того, что если $\Phi \in P_Q$, то и $\overline{\Phi} \in P_Q$; условие 2° в силу теоремы 3 и условие 3° в силу следующих соображений. Какова бы ни была точка $(s_0\,,\,t_0)\in Q^{(2)}$ и ее окрестность $U\subset Q^{(2)},$ всегда найдутся функции $\varphi(s) \in C_s$ и $\in \varphi(t)$ C_t такие, что $\varphi(s_0) = 1$, $\Phi(s, t) = 0$ при $(s, t) \in U$. Теорема 4 доказана.

Институт математики Академии Наук УССР Поступило 9 IX 1940

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ N. Wiener, Annals of Math., **33**, 4—100 (1932). ² R. H. Cameron, Duke Math. Journal, **3**, 662 (1937). ³ H. R. Pitt, Journ. of Math. and Phys., **4**, 420 (1938). ⁴ N. Wienera. H. R. Pitt, Duke Math. Journal, **4**, 420 (1938). ⁵ И. М. Гельфанд, ДАН, XXIII, № 5 (1939). ⁶ И. М. Гельфанд, ДАН, XXV, № 7 (1939). ⁷ М. H. Stone, Trans. of Amer. Math. Soc., **41**, 375—481 (1937).

^{*} От Д. А. Райкова автор узнал, что одновременно с ним аналогичное предложение было найдено в Москве Г. Е. Шиловым.