Доклады Академии Наук СССР 1940. том XXIX, № 3

ТЕОРИЯ УПРУГОСТИ

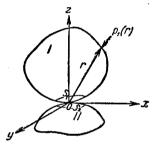
И. ШТАЕРМАН

ОБОБЩЕНИЕ ТЕОРИИ ГЕРЦА МЕСТНЫХ ДЕФОРМАЦИЙ ПРИ СЖАТИИ УПРУГИХ ТЕЛ

(Представлено академиком С. Л. Соболевым 26 VIII 1940)

Задача о местных деформациях при сжатии упругих тел решена Герцом в несколько упрощенном виде в связи с принятыми им допущениями. Здесь мы даем векторное интегральное уравнение, к которому приводится контактная задача в общем виде.

Пусть O—точка касания тел перед сжатием. Построим систему прямоугольных координат xyz с началом в точке O, расположив оси Ox и Oy в плоскости касания сжимаемых тел (см. фигуру). Пусть далее \overline{p}_1 (\overline{r})—внешнее давление в точке поверхности первого тела с радиусом-вектором \overline{r} , \overline{p}_2 (\overline{r})—внешнее давление, действующее на второе тело. Под действием этого давления некоторая часть поверхности первого тела S_1 придет в соприкосновение с частью S_2 поверхности второго тела. При этом на поверх-



поверхности второго тела. При этом на поверхности S_1 возникнет некоторое давление $\overline{p}(\overline{r})$, на поверхности S_2 некоторое давление $\overline{q}(\overline{r})$. Пусть далее $\overline{p}(\overline{r})$ радиус-вектор точки поверхности S_1 , соприкасающейся с точкой поверхности S_2 , имеющей радиус-вектор \overline{r} . Тогда

$$\overline{q}(\overline{r}) = -\overline{p}[\overline{p}(\overline{r})]. \tag{1}$$

Из условий равновесия сжатых тел получаем следующие уравнения:

$$\int_{S_1} \overline{p}(\overline{r}) d\sigma + \int_{S_2} \overline{p}(\overline{r}) d\sigma = 0, \int_{S_2} \overline{p}(\overline{p}(\overline{r})) d\sigma - \int_{S_2} \overline{p}(\overline{r}) d\sigma = 0, \quad (2)$$

$$\int\limits_{S_{1}}\overline{p}\left(\overline{r}\right)\times\overline{r}\,d\mathfrak{a}+\int\overline{p}_{1}\left(\overline{r}\right)\times\overline{r}\,d\mathfrak{a}=0,\ \int\limits_{S_{2}}\overline{p}\left[\overline{p}\left(\overline{r}\right)\right]\times\overline{r}d\mathfrak{a}-\int\overline{p}_{2}\left(\overline{r}\right)\times\overline{r}d\mathfrak{a}=0.$$

Перейдем теперь к выводу условий касания тел при сжатии. Пусть \overline{u}_1 (\overline{r})— перемещение точки первого тела с радиусом-вектором \overline{r} относительно координатной системы $x_1y_1z_1$, имеющей начало в центре тяжести первого тела O_1 и перемещающейся при сжатии вместе с окрестностью центра тяжести этого тела. Аналогичное обозначение введем для вто-

рого тела. Пусть далее $\overline{\alpha}$ —перемещение центра тяжести второго тела O_2 относительно центра тяжести первого тела O_1 и $\overline{\omega}$ —поворот системы $x_2y_2z_2$ относительно системы $x_1y_1z_1$ при сжатии. Если бы система $x_2y_2z_2$ не переместилась при сжатии, точка поверхности S_2 с радиусом-вектором \overline{r} после сжатия приобрела бы радиус-вектор $\overline{r}+\overline{u}_2$ (\overline{r}). Соответствующая точка поверхности S_1 имела бы после сжатия радиус-вектор $\overline{\rho}$ (\overline{r}) + \overline{u}_1 [$\overline{\rho}$ (\overline{r})], если бы при сжатии не перемещалась система $x_1y_1z_1$. Таким образом для каждой точки поверхности S_2 должно выполняться условие:

$$\bar{\rho}\left(\bar{r}\right) + \bar{u}_{1}\left[\bar{\rho}\left(\bar{r}\right)\right] = \bar{r} + \bar{u}_{2}\left(\bar{r}\right) + \bar{\alpha} + \bar{\omega} \times (\bar{r} - \bar{r}_{2}), \tag{3}$$

где \bar{r}_2 — радиус-вектор центра тяжести второго тела O_2 . Определим теперь перемещения \bar{u}_1 (\bar{r}) и \bar{u}_2 (\bar{r}), пользуясь методом Сомилиана. Обозначим через \bar{u}_1' (\bar{r} , \bar{r}') перемещение точки упругого пространства с радиусом-вектором \bar{r} под действием приложенной в точке с радиусом-вектором \bar{r}' единичной силы, направленной по оси x, а также силы и пары в точке O_1 , удерживающих первую силу в равновесии. Пусть, далее, $\bar{u}_1''(\bar{r},\bar{r}')$ — перемещение, непрерывное в области, занимаемой первым телом, которому на поверхности первого тела соответствуют те же напряжения, что и перемещению $\bar{u}_1'(\bar{r},\bar{r}')$. Произвольные постоянные при определении этих перемещений должны быть найдены из того условия, что перемещения и соответствующие вращения исчезают в точке O_1 . Направляя единичную силу по оси y и по оси z, найдем аналогичные перемещения $\bar{v}_1'(\bar{r},\bar{r}')$, $\bar{w}_1'(\bar{r},\bar{r}')$, $\bar{v}_1''(\bar{r},\bar{r}')$ и $\bar{w}_1''(\bar{r},\bar{r}')$. Тогда по Сомилиана

$$\begin{split} \overline{u}_{1}\left(\bar{r}\right) &= \int_{S_{1}} \{\bar{i}\ \overline{p}\left(\bar{r}'\right) \cdot \left[\overline{u}_{1}'\left(\bar{r},\ \bar{r}'\right) - \overline{u}_{1}''\left(\bar{r},\ \bar{r}'\right)\right] + \bar{j}\ \overline{p}\left(\bar{r}'\right) \cdot \left[\overline{v}_{1}'\left(\bar{r},\ \bar{r}'\right) - \overline{v}_{1}''\left(\bar{r},\ \bar{r}'\right)\right] + \\ &+ \overline{k}\overline{p}\left(\bar{r}'\right) \cdot \left[w_{1}'\left(\bar{r},\ \bar{r}'\right) - \overline{w}_{1}''\left(\bar{r},\ \bar{r}'\right)\right] \}\ d\sigma + \\ &+ \int_{S_{1}} \{\bar{t}\ \overline{p}_{1}\left(\bar{r}'\right) \cdot \left[\overline{u}_{1}'\left(\bar{r},\ \bar{r}'\right) - \overline{u}_{1}''\left(\bar{r},\ \bar{r}'\right)\right] + \bar{j}\ \overline{p}_{1}\left(\bar{r}'\right) \cdot \left[\overline{v}_{1}'\left(\bar{r},\ \bar{r}'\right) - \\ &- \overline{v}_{1}''\left(\bar{r},\ \bar{r}'\right)\right] + \bar{k}\ \overline{p}_{1}\left(\bar{r}'\right) \cdot \left[\overline{w}_{1}'\left(\bar{r},\ \bar{r}'\right) - \overline{w}_{1}''\left(\bar{r},\ \bar{r}'\right)\right] \}\ d\sigma. \end{split} \tag{4}$$

Аналогично определяя перемещение $\overline{u}_{2}(\bar{r})$ и подставляя найденные выражения для перемещений $\overline{u}_{1}(\bar{r})$ и $\overline{u}_{2}(\bar{r})$ в уравнение (3), получим следующее основное векторное интегральное уравнение:

$$\int_{S_{1}} \{\overline{i} \, \overline{p} \, (\overline{r}') \cdot \{\overline{u}'_{1} \, [\overline{p} \, (\overline{r}), \, \overline{r}'] - \overline{u}''_{1} \, [\overline{p} \, (\overline{r}), \, \overline{r}']\} + \overline{j} \, \overline{p} \, (\overline{r}') \cdot \{\overline{v}'_{1} \, [\overline{p} \, (\overline{r}), \, \overline{r}'] - \overline{v}''_{1} \, [\overline{p} \, (\overline{r}), \, \overline{r}']\} + \overline{k} \, \overline{p} \, (\overline{r}') \cdot \{\overline{w}'_{1} \, [\overline{p} \, (\overline{r}), \, \overline{r}'] - \overline{w}''_{1} \, [\overline{p} \, (\overline{r}), \, \overline{r}']\}\} \, d\sigma + \\
+ \int_{S_{2}} \{\overline{i} \, \overline{p} \, [\overline{p} \, (\overline{r}')] \cdot [\overline{u}'_{2} \, (\overline{r}, \, \overline{r}') - \overline{u}''_{2} \, (\overline{r}, \, \overline{r}')] + \overline{j} \, \overline{p} \, [\overline{p} \, (\overline{r}')] \cdot [\overline{v}'_{2} \, (\overline{r}, \, \overline{r}') - \overline{v}''_{2} \, (\overline{r}, \, \overline{r}')]\} \, d\sigma + \\
- \overline{v}''_{2} \, (\overline{r}, \, \overline{r}')] + \overline{k} \, \overline{p} \, [\overline{p} \, (\overline{r}')] \cdot [\overline{w}'_{2} \, (\overline{r}, \, \overline{r}') - \overline{w}''_{2} \, (\overline{r}, \, \overline{r}')]\} \, d\sigma = \overline{F} \, (\overline{r}), \quad (5)$$

где

$$\begin{split} \overline{F}(\bar{r}) &= \bar{r} - \bar{\rho} \; (\bar{r}) + \overline{\alpha} + \overline{\omega} \times (\bar{r} - \bar{r}_2) - \int \{ \bar{i} \; \overline{p}_1 \; (\bar{r}') \cdot \{ \overline{u}_1' [\bar{\rho} \; (\bar{r}), \; \bar{r}'] - u_1'' [\bar{\rho} \; (\bar{r}), \; \bar{r}'] \} + \bar{j} \cdot \bar{p}_1 \; (\bar{r}') \cdot \{ \bar{v}_1' [\bar{\rho} \; (\bar{r}'), \; \bar{r}'] - \bar{v}_1'' [\bar{\rho} \; (\bar{r}), \; \bar{r}'] \} + \\ + \bar{k} \; \overline{p}_1 \; (\bar{r}') \cdot \{ \overline{w}_1' [\bar{\rho} \; (\bar{r}), \; \bar{r}'] - \overline{w}_1'' [\bar{\rho} \; (\bar{r}), \; \bar{r}'] \} \} d\sigma + \int \{ \bar{i} \; \overline{p}_2 \; (\bar{r}') \cdot [\bar{u}_2' (\bar{r}, \; \bar{r}') - \bar{u}_2'' (\bar{r}, \; \bar{r}')] + k \; \bar{p}_2 \; (\bar{r}') \cdot [\bar{w}_2' \; (\bar{r}, \; \bar{r}') - \bar{w}_2'' \; (\bar{r}, \; \bar{r}')] \} d\sigma. \end{split}$$

Уравнения (5) и (2) определяют неизвестные функции \overline{p} (\overline{r}) и \overline{p} (\overline{r}), контур, ограничивающий поверхность давления, и постоянные $\overline{\alpha}$ и $\overline{\omega}$, а также содержат условия, которым должны удовлетворять заданные функции \overline{p}_1 (\overline{r}) и \overline{p}_2 (\overline{r}) для того, чтобы сжатые тела находились в равновесии. Кроме того заданные функции \overline{p}_1 (\overline{r}) и \overline{p}_2 (\overline{r}) должны быть таковы, чтобы угол между направлением давления в произвольной точке поверхности давления и направлением нормали к поверхности давления в этой точке не превосходил угла трения для сжимаемых тел.

Из полученных нами уравнений при соответствующих дополнительных гипотезах нетрудно получить уравнения Герца. Пусть

$$\begin{split} & \int \, \overline{p}_{\mathbf{1}} \left(\overline{r} \right) d \mathbf{\sigma} = - \, \overline{k} P, \qquad \int \, \, \overline{p}_{\mathbf{2}} \left(\overline{r} \right) d \mathbf{\sigma} = \overline{k} P, \\ & \int \, \, \overline{p}_{\mathbf{1}} \left(\overline{r} \right) \times \overline{r} \, d \mathbf{\sigma} = \int \, \, \, \overline{p}_{\mathbf{2}} \left(\overline{r} \right) \times \overline{r} \, d \mathbf{\sigma} = 0. \end{split}$$

Чтобы получить приближенное решение задачи, положим: $\bar{\rho}_x\left(\bar{r}\right)=x$, $\rho_y\left(\bar{r}\right)=\bar{y}$. Разность $\rho_z\left(\bar{r}\right)-z$ при соответствующем выборе направлений осей Ox и Oy может быть аппроксимирована суммой Ax^2+By^2 . Перемещение $\overline{u}_1\left(\bar{r}\right)$ заменим приближенно перемещением соответствующей точки упругого верхнего полупространства, находящегося под действием давления $p_z\bar{k}$ на граничной плоскости.

Тогда $w_{1z}'(\bar{r},\bar{r}')-w_{1z}''(\bar{r},\bar{r}')=\frac{\vartheta_1}{R},$ где R— расстояние между точками с радиусами-векторами \bar{r} и $\bar{r}',$

$$\vartheta_1 = \frac{\lambda_1 + 2\mu_1}{4\pi\mu_1 (\lambda_1 + \mu_1)},$$

где λ_{1} и μ_{1} — упругие постоянные первого тела,

$$u_{1z} = \int_{G} p_{z} \left(w'_{1z} - w''_{2z}\right) d\sigma = \vartheta_{1} \int_{G} \frac{p_{z} d\sigma}{R},$$

где G — проекция поверхности $S_{\scriptscriptstyle 1}$ на плоскость xy. Аналогично

$$u_{2z} = -\vartheta_{\mathbf{z}} \int_{G} \frac{p_{\mathbf{z}} d\sigma}{R}.$$

Проектируя векторы, входящие в уравнение (3), на ось z и пренебрегая поворотом $\overline{\omega}$, получаем уравнение Герца:

$$(\vartheta_1 + \vartheta_2) \int_C \frac{p_z dz}{R} = \alpha_z - Ax^2 - By^2, \tag{6}$$

которое совместно с уравнением

$$\int_{C} p_z d\sigma = P \tag{7}$$

определяет функцию p_z , область G и «сближение» α_z .

Поступило 26 VIII 1940