Доклады Академии Наук СССР 1940. том XXVII, № 8

ФИЗИОЛОГИЯ РАСТЕНИЙ

И. Н. ГОЛУБИНСКИЙ и М. И. РЫБАЧЕНКО

ИЗУЧЕНИЕ ЖИЗНЕСПОСОБНОСТИ ПЫЛЬЦЫ HUMULUS LUPU-LUS L. И НЕКОТОРЫХ РОДСТВЕННЫХ ЕМУ ВИДОВ ПРИ ПРОРА-ЩИВАНИИ В ИСКУССТВЕННЫХ СРЕДАХ

(Представлено академиком Н. И. Вавиловым 25 III 1940)

Изучением жизнеспособности пыльцы хмеля путем проращивания ее в искусственных средах мало кто занимался. Из известных нам авторов только Winge (2) удалось прорастить пыльцу японского хмеля ($H.\ japonicus$), но, судя по рисунку, пыльцевые трубки в его экспериментах были

очень короткими.

Нами еще в 1936—1937 гг. проводились попытки проращивания пыльцы H. lupulus, H. japonicus и Urtica divica в растворах сахаров разных концентраций, но эти попытки дали мало обнадеживающие результаты: пыльца указанных растений либо вовсе не прорастала, либо давала очень небольшой процент прорастаемости с исключительно короткими, вроде изображенных в работе Winge (²), трубками. Вместе с тем изучение продолжительности жизнеспособности пыльцевых зерен хмеля имело для нас исключительное значение при проведении гибридизационных работ по скрещиванию форм неодновременно созревающих. В связи с этим в 1939 г. нами начаты довольно широкие опыты по изысканию наиболее благоприятных сред для проращивания, с одновременным изучением продолжительности жизнеспособности пыльцы путем повторных опылений женских соцветий на протяжении определенного периода времени одной и той же пыльцой (пыльцой одного дня сбора).

Сначала изучались растворы тростникового сахара в дестиллированной воде в концентрациях от 4 до 30% и чистая дестиллированная вода. Проращивалась пыльца *H. lupulus*, *Cannabis sativa* и *U. divica*. Сахарные растворы были следующих концентраций: дестиллированная вода, 1%, 5%, 10%, 15% 20%, 25% и 30% сахара. Результаты проращивания оставались мало удовлетворительными и очень далекими от действительного физиологического состояния пыльцы и ее способности к оплодотворению, и поэтому мы начали искать другие среды, более подходящие для проращивания пыльцевых зерен и дающие вместе с тем более правильное представление о действительном их состоянии. С этой целью испытывались разные концентрации агар-агара и желатины в добавление к указанным ранее растворы сахаров и концентрации агар-агара и желатины. Наиболее благоприятными средами для прорастания пыльцы всех видов оказались 5% и 10% ные растворы сахара с добавлением 0,25% агар-агара. Среды с добав-

лением желатины не дали повышения прорастаемости, а в отдельных случаях вели даже к понижению ее. В указанных двух средах и проводили в дальнейшем изучение продолжительности жизнеспособности пыльцы интересующих нас видов при хранении ее как в обычных комнатных условиях, так и в эксикаторах над серной кислотой. Результаты экспериментов даем в табл. 1.

Таблица 1 Влияние продолжительности хранения пыльцы на ее прорастаемость

Название видов	Время сбора пыльцы	Дата	Результаты проращивания				
			xap	раствор са- а + 0,25% ар-агара	10-ный раствор са- хара+0,25% агар- агара		
			%	длина трубки	%	длина трубки	
H. lupulus	9 IX 9 IX 9 IX	9 IX 40 IX 41 IX	59,41 31,80 14,79	116 102 32	49,51 16,92 31,68	100 160 81	
77	9 IX 9 IX	12 IX 13 IX	10,00	Оч. кор.	6,00 0,0	Оч. кор.	
H. japonicus	9 IX 9 IX 9 IX	9 IX 40 IX 41 IX	81,89 75,53	166 122	85,95 77,11	145 140	
	9 IX 9 IX	12 IX 13 IX	45,69 4,47 66,09	39 Оч. кор. 38	74,55 19,64 11,63	94 24 28	
	9 IX 9 IX	44 IX 45 IX	17,44 3,36	41 37	Нетпрор. » »		
Та же пыльца (<i>H. japo-</i> nicus) с хранением	9 IX 9 IX 9 IX	9 IX 10 IX	0,0	166	0,0 85,95	145	
в эксикаторах над серной кислотой	9 IX 9 IX 9 IX	11 IX 12 IX	79,75 40,20 1,00	97 59 Оч. кор.	79,49 37,24 4,00	159 130 Оч. кор.	
Cannabis sativa (Новго- род-Северская)	9 IX 9 IX	13 IX 9 IX 10 IX	0,0 $45,55$ $42,88$	73 106	$0,0 \\ 45,54 \\ 0,0$	103	
	9 IX 9 IX 9 IX	11 IX 12 IX 13 IX	2,20 8,07 1—2	Коротк. 40	6,67 0,0	41	
То же с прививки на	9 IX 9 IX	44 IX 9 IX	0,0 $22,49$	Оч. кор. — 97	$\begin{bmatrix} 0,0\\0,0\\7,02 \end{bmatrix}$	_ 408	
H. lupulus	9 IX 9 IX	40 IX 11 IX	0,0	=	0,0		
o. aioica	20 VI 20 VI	20 VI 21 VI	Един. 0,0	Коротк.	Един.	Коротк.	

Способность к прорастанию, таким образом, пыльца хмеля и конопли сохраняет до пяти дней. В опытах Астаховой (1) пыльца конопли прорастала еще на седьмой день. Однако и этот срок все же несколько короче того срока, во время которого пыльца хмеля или конопли теряет свою оплодотворяющую способность, т. е. способность к прорастанию и оплодотворению в естественных условиях. Согласно нашим наблюдениям пыльца хмеля бывает способной к оплодотворению приблизительно около 10 дней; такой же срок по литературным данным (1) имеет место и в отношении пыльца конопли. Отсюда вытекает, что пыльца названных растений теряет способность к прорастанию на несколько дней ранее потери своей физиологической оплодотворяющей способности, а на основании этого можно сделать и практический вывод о полной пригодности для гибридизации

всякой, хотя бы в некоторой степени способной к прорастанию в искус-

ственных средах пыльцы.

Одновременно с проращиванием обычной пыльцы с нормальных растений H. lupulus и C. sativa нами проводились опыты по изучению способности к прорастанию пыльцы конопли из прививок ее на хмель, а также пыльцы, взятой из растений, подвергнутых в молодом возрасте воздействию паров аценафтена. Как тот, так и другой случай дают снижение прорастаемости пыльцы и уменьшают продолжительность ее сохранения (табл. 2).

Таблица 2 Прорастаемость пыльцы с привитых растений и растений, обработанных парами аценафтена

Происхождение пыльцы	Время сбора пыльцы	Дата прора- щивания	Результаты проращивания				
			5%-ный раствор сахара+0,25% агар-агара		10-ный раствор сахара+0,25% агар-агара		
			% прораст.	длина трубки	% про-	длина трубки	
Пыльца <i>C. sativa</i> (с растений, обработанных аценафтеном), растение 1. То же, растение 2	4 I 10 I 13 I	4 I 40 I 13 I	=	Ξ	25,0 0,0 Отдельн. зерна	113 	
витых на черенки <i>H. lupulus</i>) растение 1	4 III 4 III 4 III 7 III 9 IX 9 IX	4 III 4 III 4 III 7 III 9 IX 10 IX	0,0 66,67 	220 	0,0 22,45 5,0 0,0 7,02 0,0	134 201 — 108	

В некоторых случаях прививок пыльца конопли вовсе не прорастала. Наблюдались также случаи, когда при снижении процента прорастаемости

длина трубок даже увеличивалась.

Из данных табл. 2, таким образом, можно заключить, что прививка и связанные с ней нарушения физиологических функций по-разному влияют на прорастаемость пыльцы и ее поведение. Вид пыльцевых зерен с прививок и растений, обработанных парами аценафтена, также несколько отличен от вида зерен с нормальных растений. Это различие заключалось в большем проценте ненормальных зерен и разной величине их у растений, привитых на хмель или обработанных аценафтеном.

Украинская научно-исследовательская станция хмелеводства Житомир, УССР

Поступило 29 III 1940

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Астахова, Технічні культури, 5—6 (1939). ² Ö. Winge, C. R. **L**abor. Carlsberg, 11, 1—46 (1914).