Доклады Академии Наук СССР 1940. том XXVII, № 8

ФИЗИЧЕСКАЯ ХИМИЯ

м. А. ДИВИЛЬКОВСКИЙ и Д. И. МАШ

дисперсия и абсорбция электромагнитных волн в тяжелой воде

(Представлено академиком Л. И. Мандельштамом 20 III 1940)

Изучение молекулярных свойств тяжелой воды представляет особый интерес, так как оно позволяет сравнивать структуру тяжелой и обычной воды. Строение обеих жидкостей в общем подобно, хотя и отличается в некоторых отношениях. Вода является сильно ассоциированной полярной жидкостью, время релаксации молекул которой порядка $0.6 \cdot 10^{-10}$ сек. ($t \cdot 20^{\circ}$). Это время должно существенно зависеть от вязкости жидкости. Вязкость же тяжелой воды в 1.25 раза больше вязкости воды (1) (при $t \cdot 20^{\circ}$). Возникает вопрос, превосходит ли в самом деле время релаксации тяжелой воды на 25% время релаксации обычной воды или же существуют другие факторы, влияющие на него.

2. Мы недавно разработали термометрический метод измерения обеих электрических констант жидкостей (диэлектрической постоянной и проводимости) на высокой частоте (2), который нам позволил получать результаты с точностью в 1-2%. Метод [развитие метода М. Дивильковского и М. Филиппова (3)] и результаты, полученные для воды и водного раствора KCl, подробно изложены в другом месте*. Мы ограничимся здесь крат-

ким изложением его основных черт.

Изучаемая жидкость (около 0,4 см³) вводится в сферический резервуар кварцевого термометра; термометр тщательно градуируется. Измерения производятся наблюдением нагревания жидкости в магнитном и электрическом полях лехеровой системы; напряженность полей измеряется непосредственно при помощи ртутного термометра, помещенного в пучности магнитного поля. Формулы, выведенные М. Дивильковским (4), позволяют

вычислить из этих данных обе константы.

Наши измерения производились при двух длинах волн: $\lambda=451$ см и $\lambda=23,6$ см. Напряженность применявшихся при 451 см полей была около 40 абс. единиц; эта напряженность, допуская точное измерение нагревания в электрическом поле, была недостаточна для измерений в магнитном поле. Поэтому мы при этой волне находили значение \mathfrak{s}'' , полагая диэлектрическую постоянную тяжелой воды (5) равной 79,2 (t 21,3°). При 23,6 см напряженность полей была около 1,2 абс. единиц, что вполне достаточно для измерений как в электрическом, так и в магнитном полях.

Тяжелая вода была получена от Кальбаума (99,2 г/100 г D₂O). Ее тепло-

^{*} Работа сдана для публикации в «Журнал технической физики».

вое расширение было измерено в термометре в интервале 8—31° и оказалось в согласии с табличными данными.

3. В табл. 1 даны результаты измерений в значениях \mathfrak{s}' , \mathfrak{s}'' и проводимости $\sigma = \frac{\mathfrak{s}''}{60\lambda} \Omega^{-1}$ см $^{-1}$, с соответствующими средними квадратичными ошибками.

Таблица 1

$\mathrm{D_2O}$							
λсм	$t^{\circ}_{\partial\Phi}$	ε'	ε"	σ·10 ⁴ Ω ⁻¹ CM ⁻¹			
451 23,6	21,3° 21,2°	78,5±0,8	4,76±0,12 7,15±0,14	$1,76\pm0,04$ $50,5\pm1,0$			

Как видно, проводимость при относительно низкой частоте ($\lambda = 451$ см) очень велика; это можно объяснить только тем, что в тяжелой воде имеется электролитическое загрязнение, ибо полярная абсорбция не может быть такой большой вдали от области дисперсии, а результаты при $\lambda = 23,6$ см показывают, что дисперсия еще только намечается при этой частоте.

Для разделения двух проводимостей—полярной и ионной—мы считаем, что ионная проводимость σ_i постоянна, тогда как полярная проводимость σ_p пропорциональна в первом приближении квадрату частоты. Это следует из формулы Дебая (6), которая оправдывается в случае обычной воды:

$$\mathbf{s}_p'' = \frac{\lambda_s}{\lambda} \; \frac{\mathbf{s}_0 - n_0^2}{1 + \left(\frac{\lambda_s}{\lambda}\right)^2} = 60 \; \lambda \mathbf{\sigma}_p.$$

Здесь λ_s есть «Sprungwelle» по Мальшу (7), ε_0 и n_0 —статическая диэлектрическая постоянная и оптический показатель преломления. Общая проводимость есть: $\sigma = \sigma_p + \sigma_i$. Расчет дает: $\lambda_s = 2,13 \pm 0,05$ см, $\sigma_i \cdot 10^4 = 1,62 \, \Omega_{-1}$ см⁻¹.

Табл. 2 содержит результаты, сопоставленные с данными, полученными нами ранее для обычной воды тем же методом.

Таблица 2

	λсм	t° _{эф}	ε'	ε"	$\sigma_p \cdot 10^4 \ \Omega^{-1} \ \mathrm{cm}^{-1}$
D_2O	451 23,6	21,3° 21,2°	78,5±0,8	$ \begin{array}{c c} \sim 0.38 \\ 6.92 \pm 0.14 \end{array} $	$0,14$ $48,9 \pm 1,0$
H ₂ O	453 23,6	19,1° 19,4°		$0,34\pm0,01 \\ 5,30\pm0,13$	$\begin{array}{c} 0,126\pm0,003\\ 37,5 \pm0,9 \end{array}$

Для обычной воды мы нашли $\lambda_s = 1,56 \pm 0,04$ см, откуда

$$\frac{\lambda_s^{\text{D O}}}{\lambda_s^{\text{H}_2\text{O}}} = 1.36 \pm 0.05.$$

Следовательно, порядок величины возрастания времени релаксации тяжелой воды тот же, что и увеличения вязкости (25%), однако сама величина несколько больше ожидаемой.

4. Заметим, что ионная проводимость, обусловленная растворенными

в тяжелой воде ионами, соответствует концентрации серной кислоты в $0,0004\ N$, что возможно, так как тяжелая вода изготовляется обычно для других целей, чем измерение проводимости.

Физический институт им. П. Н. Лебедева Академия Наук СССР Поступило 29 III 1940

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ G. Lewis a. R. Macdonald, Journ. Am. Chem. Soc., **55**, 3057 (1933). ² М. Дивильковский, ДАН, XXIV, 433 (1939). ³ М. Дивильковский и М. Филиппов, ЖТФ, **6**, 93 (1936); Sow. Phys., **8**, 311 (1935). ⁴ М. Дивильковский и М. Филиппов, ЖТФ, **9**,433 (1939). ⁵ G. Lewis, A. Olson a. W. Maroney, Journ. Am. Chem. Soc., **55**, 4731 (1933). ⁶ П. Дебай, Полярные молекулы, гл. V, **§** 19 (1931). ⁷ J. Malsch, Ann. d. Phys., **19**, 707 (1934); M. Wien, Phys. ZS., **37**, 155 (1936).