Доклады Академии Наук СССР 1940. том XXVI, № 8

ХИМИЯ

г. б. бокий в п. и. усиков РЕНТГЕНОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ СТРУКТУРЫ (NH₄)₂IrCl₆

(Представлено академиком Н. С. Курнаковым 26 I 1940)

Соединение (NH₄)₂IrCl₆ было синтезировано в отделе комплексных соединений Института общей и неорганической химии Академии Наук СССР Н. К. Пшеницыным и передано нам для определения структуры.

Это были очень темные, почти непрозрачные, изометрические кристаллы размером в несколько миллиметров. Измерение на 99 гониометре показало, что кристаллы относятся к кубической сингонии. Внешняя 98 форма—октаэдр. Никаких других граней, кроме {111}, наблюдать ни разу не удалось. 97 Принадлежность кристаллов к кубической сингонии подтверждалась также их оптическими свойствами: в поляризованном свете можно констатировать их изотропность. Наблюдение под бинокулярным

микроскопом фигур травления на гранях октаэдра показало принадлежность наших кристаллов к гексоктаэдрическому виду симметрии $(3L_44L_5^66L_29pc)$. После этого естественно было предположить, что соединение $(NH_4)_2IrCl_6$ имеет одинаковую структуру с K_2PtCl_6 . Для подтверждения этого было предпринято рентгенографическое исследование структуры.

Кристаллическая структура многих соединений подобного типа исследована различными авторами. Wyckoff и Posnjak (¹) исследовали структуру соединения $(NH_4)_2PtCl_6$. Позднее Ewing и Pauling (²) была изучена структура K_3PtCl_6 .

Наконец Engel (³) определил структуру целого ряда соединений изоморфной группы R₂'R^{1V}Cl₆. Все соединения указанного типа принадлежат к пространственной группе O_h⁵. Настоящая работа еще раз подтвердила результаты предыдущих исследований на примере вещества (NH₄)₂IrCl₆.

Были получены нами рентгенограммы вращения по [001] и дебаеграмма, обе с Fe-излучением. Параметр решетки определен из дебаеграммы по методу Бредлея (⁴) путем экстраполирования на угол $\vartheta = 90^{\circ}$. Кривая $a = f(\cos^2 \vartheta)$ приведена на фиг. 1, откуда получается значение a = 9,87Å.

Плотность вещества, определенная нами методом тяжелых жидкостей, равняется 3,03. Отсюда число молекул в элементарной ячейке получается равным 4. Рентгеновская плотность, вычисленная из молекулярного веса и константы решетки, равна 3,06.

Присутствие на рентгенограмме интерференций от плоскостей с индексами только одинаковой четности свидетельствует о том, что мы имеем гранецентрированную решетку.

Для кубической гранецентрированной решетки с числом атомов в ячейке 4, 8, 24, 32 мы имеем три пространственные группы T³_h, O³, O⁵_h. По погасанию интерференций и виду симметрии первые две группы отпадают, остается группа О_h.

Согласно обозначениям интернациональных таблиц возможны такие позиции атомов: иридия 4a или 4b, азота 8c, хлора 24d и 24e. Имеется, следовательно, два случая, отличающиеся между собой расположением атомов хлора: 1) 4a, 8c, 24e (фиг. 3) и 2) 4a, 8c, 24d. В первом из них положение атомов хлора зависит от неизвестного параметра x, для второго случая координаты всех атомов вполне определенны.

Фиг. 3. Структура (NH₄)₂IrCl₆. На чертеже показан только один хлорный октаэдр.

Значение параметра х находится путем сравнения вычисленной и наблюденной интенсивностей для нескольких линий (hkl), близких по значению 8, но сильно отличающихся величиной интенсивности. Интенсивность линий вычисляется по формуле:

 $I_{\rm BMM} = \frac{1 + \cos^2 \vartheta}{\sin^2 \vartheta \cos \vartheta} pR(\vartheta) |A^2 + B^2|,$ где $A = \sum_{i} a_{i} \sum_{m, n, p} \cos 2\pi (hm + kn + lp); \quad B = 0,$ для атомов придия (4a) $\sum_{m, n, p} \cos 2\pi (hm + kn + lp) = 4$

0, если $h^2 + k^2 + l^2 = 2n + 1$, для атомов азота (8c) $\sum \ldots = 8$, если $h^2 + k^2 + l^2 = 8n$ $-8, \quad \text{w} \quad h^2 + k^2 + l^2 = 8n + 4,$ для атомов хлора (24e) $\sum \dots = 8 [\cos 2\pi hx + \cos 2\pi kx + \cos 2\pi lx]$ 0 при $h^2 + k^2 + l^2 = 2n + 1$ (24d) $\sum \dots = -8$ при $h^2 + k^2 + l^2 = 16n + 4$ или 16n + 8

24 » $h^2 + k^2 + l^2 = 16n$ или 16n - 4.

Подходящими для сравнения интенсивностей являются линии: 331 < <131; 131<351; 151<131; 151<351.

790

Структурный множитель для них имеет вид:

 $A = 4a_{jr} + 8a_{cl} \left(\cos 2\pi hx + \cos 2\pi kx + \cos 2\pi lx\right).$

Кривые, определяющие зависимость I(x), приведены на фиг. 2. Из этих кривых получается значение параметра x от 0,23 до 0,25.

Считая a=9,87Å, расстояние Ir—Cl получается 2,37Å при x=0,24и 2,47Å при x=0,25. Последняя цифра хорошо согласуется с этим расстоянием, вычисленным из значения понных радиусов (Ir⁴⁺=0,66Å; Cl¹⁺=1,81Å). Для второго варианта это расстояние Ir—Cl получается 3,48Å, что не соответствует размерам ионов.

Возвращаясь к размещению атомов в ячейке, нам необходимо выбрать один из двух вариантов 4a, 8c, 24e (см. фиг. 3) или 4a, 8c, 24d. Это может быть сделано путем сравнения интенсивностей, вычисленных для обоих вариантов, с интенсивностью наблюденной.

hkl	4a 8c 24e	4a 8c 24d	Набл.	hkl	4a 8c 24e	4a 8c 24d	Набл.
111	64	10000		959 640 8		1.1.1	00.4
200	50 /	6 1		174 (554)	4/,/	_	32,1
200	29 2	0,1	59 1	640 800 8	03,1	47 C	4/,1
440	02,0	12	05,4	640,000 p	52.2	17,0	42,9
	07 0		1	042,020 p	00,0	1 - F - 1 - 1 - 1	31,0
113	85,8		135,4	371	155,8	-	47,3
222,400 B	14,2	113,0	36,2	800	44,2	-	13,7
$400, 420\beta$ 331 β	105,5	-	115,4	820	77,4	22,6	49,5
331	49.6	_	53.3	822 (660)	40.8		18 0
420	113.8	31.5	97.4	571.555	133.3	_	41 8
151 (333)	79.0	33.3	81.6	840	263 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	64 0
440.620 3	103.9		100.0	191 573 1	200,0	1 11/25/12/1	01,0
1	,-	A	100,0	771 B	160,8		59,0
351	100.6		86.1	842	208 0	45 7	97 3
442,353 8	72.2	23.0	86 1	391	266 7	166 9	54 1
620	26.9		14.7	771 755	277 3	100,5	94 4

Наблюденная интенсивность получена из измерений на микрофотограмме дебаеграммы, снятой на микрофотометре Koch-Goos. Для наглядности в третьем столбце таблицы приведены цифры только для тех линий, интенсивность которых сильно отличается от интенсивности для первого варианта. Для остальных линий (прочеркнутых в таблице) интенсивности для обоих вариантов почти совпадают.

Эта таблица показывает удовлетворительное совпадение вычисленных значений интенсивностей с экспериментальными для основной части рентгенограммы и наглядно демонстрирует преимущество первого варианта перед вторым. Для последних линий вычисленная интенсивность получается значительно больше экспериментальной ввиду неравномерности фона рентгенограммы.

Таким образом соединение (NH₄)₂IrCl₆ по своей структуре принадлежит к группе комплексных солей типа K₂PtCl₆, изученных ранее цитированными авторами.

> Поступило 26 I 1940

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. Wyckoff u. Posnjak, Journ. Am. Chem. Soc., **43**, 2292 (1921). ² F. J. Ewing u. L. Pauling, Z. Kristallogr., **68**, 223 (1928). ³ G. Engel, Z. Kristallogr., **90**, 371—373 (1935). ⁴ Bradley a. Fay, Proc. of Phys. Soc., **44**, 563 (1932).