Дојелады Академији Наук СССР 1940. тов XXVI, № 5

ФИЗИКА

Л. В. ГРОШЕВ

УГЛОВОЕ РАСПРЕДЕЛЕНИЕ И ИМПУЛЬС ЯДРА ДЛЯ ПАР В АЗОТЕ

(Представлено академиком С. И. Вавиловым 31 XII 1939)

1. В предыдущем сообщении (¹) был рассмотрен вопрос о вероятности образования и о распределении по энергии пар, создаваемых в азоте γ-лучами ThC". Для тех же пар было изучено угловое распределение направлений вылета позитронов и электронов. Полученные результаты для 79 пар, попадающих в интервал энергий 1 350 — 1 850 ekV, приводятся ниже.

С помощью стереокомпаратора (²) для каждой пары определялось положение в пространстве ее вершины, одной точки на следе позитрона и одной точки на следе электрона. По разности координат этих точек находились соответствующие углы. При этом вводились поправки на искривление следов в магнитном поле.

Были определены следующие углы: 1) угол χ , образуемый направлением фотона и направлением вылета позитрона; 2) угол ψ , образуемый направлением фотона и направлением вылета электрона; 3) угол φ между направлениями вылета позитрона и электрона; 4) двугранный угол Φ между двумя плоскостями, одна из которых определяется направлением фотона и направлением вылета позитрона, а другая—направлением фотона и направлением вылета электрона. Этот двугранный угол наряду с углами χ и ψ входит в качестве переменной в выражение для дифференциального эффективного сечения процесса образования пар (³).

На фиг. 1 приведено распределение для углов χ и ψ . По оси абсцисс отложен соответствующий угол, по оси ординат — число частиц, приходящееся на интервал углов в 10°. Из фигуры видно, что между распределениями для χ и ψ практически не имеется никакого различия. Если подсчитать средние значения углов χ и ψ , то для них получается $\chi = \psi = 23^{\circ}$.

На фиг. 2 дано распределение для угла φ . По оси абсцисс нанесены углы, по оси ординат — число пар в интервале 20°. Для среднего значения угла φ получается $\overline{\varphi} = 40^\circ$.

Можно показать, что для распределений фиг. 1 и 2 средние величины $\overline{\chi}$, $\overline{\psi}$ и $\overline{\varphi}$ обладают сравнительно большой устойчивостью. Действительно, на основании формулы, приведенной в предыдущей статье (¹), находим для дисперсии средних значений $\overline{\chi}$, $\overline{\psi}$ и $\overline{\varphi}$ $\sigma_{\overline{\chi}}^2 = \sigma_{\overline{\xi}}^2 = 3,2$ в $\sigma_{\overline{\varphi}}^2 = 6,2$. Это дает для соответствующих стандартных отклонений $\sigma_{\overline{\chi}} = \sigma_{\overline{\xi}} = 1,8^{\circ}$ и $\sigma_{\overline{\varphi}} = 2,5^{\circ}$. Поэтому средние значения углов χ , ψ и φ на основании нашего материала устанавливаются с достаточно большой точностью.

432

100

На фиг. З приведено распределение для угла Ф. По оси абсцисс нанесен угол, по оси ординат — число пар, приходящееся на интервал в 20°. При этом для каждой пары из двух возможных значений угла Ф всегда берется то, которое меньше 180°.

2. Как известно, подробная теория образования пар под действием γ-лучей разработана Бете и Гейтлером только для случая борновского приближения (³). Очевидно, что для азота это приближение более применимо, чем для любого другого газа, образование пар в котором экспериментально изучалось. Поэтому представляет интерес сопоставить

Прежде всего, в борновском приближении угловые распределения для позитронов и электронов пар, а поэтому и средние значения углов χ и ψ , должны быть одинаковыми. Как видно было выше, для пар в азоте это выполняется. Далее само распределение для углов χ , ψ и Φ принципиально может быть найдено из дифференциального эффективного сечения. Для этого необходимо его проинтегрировать по всем переменным, за исключением рассматриваемой. Однако ввиду сложности это интегрирование выполнено до конца

только в одном случае, а именно, когда энергия частиц $E \gg mc^2$. В этих условиях для углового распределения нозитронов и электронов получается следующая формула:

$$\Phi(\Theta) d\Theta = \frac{|\Theta d\Theta|}{(\Theta^2 + \Theta_0^2)^2},$$

где ${}_{i}\Theta_{0} = \frac{mc^{2}}{E}$; Е-полная энергия частицы.

20

16

12

20° 40

Фиг. 1.

Для $E = 1\,300$ ekV она графически изображена на фиг. 1. Как видим, теоретическая кривая правильно передает распределение углов χ и ψ по величине, несмотря на то, что условия, при которых формула была выведена ($E \gg mc^2$), для случая $h\nu = 5,2 mc^2$ не достаточно хорошо выполняются.

Сопоставление экспериментальных данных с теорией Бете-Гейтлера может быть проведено еще иным способом. Действительно, из дифференциального эффективного сечения можно рассчитать распределение для какого-нибудь угла при фиксированном значении другого. Такие расчеты для пар, создаваемых фотонами с энергией $h_{\nu} = 2\,620$ ekV, были

433

выполнены Буркхардтом (⁴). Принимая для простоты, что энергия пары делится пополам между позитроном и электроном, он вычислил величину дифференциального эффективного сечения, даваемого теорией Бете-Гейтлера, для 300 различных комбинаций углов ^{*} χ , ⁴ и Ф. Из его расчетов вытекает, что для не очень малых углов Ф (>120°) максимальное эффективное сечение получается в том случае, когда один из углов (χ пли ⁴) составляет приблизительно 10°, а другой лежит между 15 и 20°. Это означает, что для пар с χ , близким к 10°, в распределении углов ψ будет иметься максимум в области между 15 и 20°. Наоборот, для пар с углами χ из интервала 15 — 20° максимум в распределении ψ будет около 10°. Сказанное справедливо и в том случае, если углы χ и ψ поменять местами.

В табл. 1 приведено распределение углов для одной частицы между интервалами 0—15° и 15—30° при заданных интервалах углов для другой частицы (для случая $\Phi > 120^\circ$). Таблица показывает, что для пар в азоте указанное выше соотношение между углами, повидимому, имеет место. Это заключение справедливо по крайней мере в том отношении, что распределения, даваемые первой и второй строчками, заметным образом различаются между собой и при этом в требуемом теорией направлении.

1аолица 1			Таблица 2				
Интервал углов пля одной ча- стицы пары Интервал углов длн другой ча- стицы пары	015°	15—30°	Элемент		χ	Ψ	φ
			N	7	23°	23°	40°
0—13° 15—30°	4 18	17 16	Kr	36	26°	31°	48°
	La read si			1	h.	1, 1, 1,	

Из найденного Буркхардтом соотношения углов χ и ψ вытекает, что при больших Φ в распределении для угла φ наиболее вероятными должны быть значения около $25 - 30^\circ$, поскольку в этих условиях угол φ мало отличается от суммы $\chi + \psi$. Фиг. 2 показывает, что для пар в азоте это как раз имеет место.

В работе Буркхардта указывается также, что, если исключить пары, у которых оба угла χ и ψ малы ($< 15^{\circ}$), то в распределении для Φ наиболее вероятными являются большие углы, близкие к 180°. При этом вероятность монотонно убывает при уменьшении угла Φ . Как показывает фиг. 3, экспериментальные данные согласуются с этим выводом.

Таким образом можно сказать, что для пар в азоте в отношении распределений углов χ , ψ и Φ имеется достаточно хорошее согласие с теорией Бете-Гейтлера.

В борновском приближении средние значения углов не должны зависеть от атомного номера вещества и, кроме того, $\overline{\chi} = \overline{\psi}$. Однако сопоставление средних значений \overline{Z} , $\overline{\psi}$, $\overline{\varphi}$ для азота и криптона (⁵) показывает (табл. 2), что все они несколько увеличиваются при возрастании Z.

Имеющиеся здесь расхождения между экспериментальными данными и теорией объясняются, повидимому, тем, что в случае криптона борновское приближение уже плохо применимо. На это указывает также различие в $\overline{\chi}$ и $\overline{\psi}$ для криптона. Если не пользоваться борновским приближением, то, как показывают точные расчеты Егера и Холма (⁶), для средних значений углов имеется слабая зависимость от Z, в сторону увеличения их при возрастании Z. Это согласуется с данными табл. 2. В случае угла φ зависимость от Z заметно сказывается также и в другом отношении. Действительно, фиг. 2 показывает, что распределение φ для криптона (пунктирная линия) более размыто, чем для азота.

3. Известно, что образование пары происходит вблизи атомного ядра, которое при этом получает некоторый импульс, направленный под острым углом вперед (⁷). Для вычисления его нужно знать импульс фотона, создающего пару, импульс пары (геометрическую сумму импульсов позитрона и электрона) и образуемый ими угол с. Все эти величины могут быть определены для пар из интервала энергий 1 350—1 850 ekV. В нашем случае импульс пары и угол с определялись графическим методом. Распределение угла с для 76 пар приведено на фиг. 4. Из фигуры видно, что почти для всех пар этот угол не превышает 25°.

На фиг. 5 приведено распределение для импульса ядра. По оси абсцисс отложен импульс в единицах mc, по оси ординат—число ядер отдачи с импульсом, лежащим в интервале 0,5 mc. Это распределение приблизительно такое же, как и в случае криптона (⁷). По теории Бете-Гейтлера передаваемый ядру импульс p связан с соответствующим параметром удара r соотношением: $r \approx \frac{\hbar}{p}$. Отсюда вытекает, что при образовании пар наиболее эффективные параметры удара как для азота, так и для криптона одни и те же, а именно $\approx \frac{\hbar}{mc}$.

Исходя из закона сохранения импульса, легко показать, что при образовании пар фотонами данной энергии ядру передается импульс, не меньший некоторой величины δ . При этом чем больше энергия фотона, тем меньше δ . Для $h\nu = 5~mc^2~\delta = 0.4~mc$ (7). Бете (8) показал, что в борновском приближении для $E \gg mc^2$ в процессе образования пар ядру передается преимущественно импульс, близкий к минимальному значению δ . Фиг. 5 показывает, что то же самое имеет место и для нар в азоте.

Физический институт им. П. Н. Лебедева Академин Наук СССР Москва Поступило 4 1 1940

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ДАН, XXVI, № 5 (1940). ² Л. Грошев, Н. Добротин и И. Франк, ДАН, III(XII), 287 (1936). ³ Н. Веthea. W. Неіtler, Proc. Roy. Soc., А, **146**, 83 (1934). ⁴ G. Burkhardt, Phys. ZS., **38**, 831 (1937). ⁵ Л. В. Грошев и И. М. Франк, ДАН, XIX, № 1—2 (1938). ⁶ J. С. Јаедега. Н. В. Ниіте, Nature, **142**, 573 (1938). ⁷ Л. В. Грошеви И. М. Франк, ДАН, XIX, № 4 (1938). ⁸ Н. Веthe, Proc. <u>Camb. Phil. Soc.</u>, **30**, 524 (1934).

435