Доклады Академии Наук СССР 1940. Tom XXVI, № 8

ГЕОХИМИЯ

в. в. данилова

ФТОР В ВОДАХ ХИБИНСКОГО РАЙОНА

(Представлено академиком В. И. Вернадским 26 VIII 1939)

Количество фтора в питьевых водах обычно не превышает 0,3 мг/л, т. е. $3 \cdot 10^{-5}$ %. Как известно, питьевые воды с содержанием фтора до 1 мг/л вызывают заболевание-крапчатость эмали зубов человека и животных (1, 2). В ранее исследованных нами водах других рек Союза найденное количество фтора не превышает 0,2 мг/л.

Особый интерес в отношении содержания фтора представляют воды Хибинского района, где, как известно, имеются залежи фтор-апатита. В этом районе 4 Х 1936 г. нами был проведен сбор вод в 23 точках, главным образом, в месте расположения озер М. и Б. Вудъявр и Имандра. Кроме того, было сделано определение фтора в других образцах воды Хибинского района, присланных Кольской базой Академии Наук.

Отметим характерные особенности источников вод взятых проб (3). Оз. Имандра окаймлено с восточной стороны Хибинским массивом,

а с северо-западной горным массивом Монче и Чуна. Вода озера проврачна, не содержит в себе взвешенных частиц и совершенно бесцветна.

Оз. Б. Вудъявр расположено у подножия горы Юкспор-места залежей апатита и нефелина; вода проточная и исключительно прозрачная.

Оз. М. Вудъявр имеет много притоков, представляющих сложную гидрологическую сеть, весьма запутанную вследствие исчезновения мелких речек среди каменных осыпей и выхода их вновь на поверхность. Озеро питается не только открытыми стоками, но и подземными водами. В районе озера указаны скопления флюорита.

Оз. Альпийское образуется из ключей и горных источников, бегущих из-под морены горы Поачвумчорр-места находок роговой обманки, флюорита, нефелина, ильменита и других минералов. Вода р. Белой загрязнена сточными водами апатитовой фабрики. Река Саамская протекает через рудничный поселок Кукисвумчорр.

Река Поачиок входит в систему бассейна оз. М. Вудъявр и является наиболее крупным его притоком. В верхнем течении ее, в осыпях, встречается флюорит.

Остальные пробы вод взяты из мелких горных речек с очень быстрым течением, причем эти речки существуют весной и осенью, а летом исчезают.

Зимой они сильно вымерзают.

В числе взятых проб воды взята проба из буровой скважины на глубине 125 м, у подножия Апатитовой горы, северный отрог Кукисвумчорра, на 1 км выше рабочего поселка.

Из таблицы видно, что в водах рек и озер Хибинского района найденное количество фтора порядка $n \cdot 10^{-5} \%$ мало отличается от содержания его в водах рек других районов.

Несмотря на то, что в руслах некоторых рек Хибинского района встречаются фтор-апатитовые залежи, обогащение воды фтором сравнительно

мало вследствие быстрого течения рек и малой растворимости кристаллического

фтор-апатита.

Исключение в отношении высокого содержания фтора (1,8 · 10⁻⁴%) представляет вода буровой скважины на глубине 125 м, расположенной у подножия Апатитовой горы северного Кукис-

вумчорра.

Если сравнить воды хибинских рек с водами других рек Союза по сухому остатку и отношению фтора к этому остатку, то увидим, что в хибинских водах сухой остаток невелик, но отношения фтора к этому остатку все же больше, чем, например, в р. Волге, где сухой остаток равен 151,1 мг/л, фтор $0.9 \cdot 10^{-6}$ %, F/сухой остаток 0.06%; в реке Москве сухой остаток $220 \text{ мг/л}, \text{ фтор } 1,2 \cdot 10^{-5}\%$ F/сухой остаток 0,054% и т. д. Так как сухой остаток в основном состоит из щелочных земель (СаО), то отноше-

№ no nop.	Дата взятия проб	Фтор	Сухой остаток в мг/л	Фтор по отношении к сухому остатку
	1936 год			
1	13 X	$0,9 \cdot 10^{-6}$	39,3	0,23
2	18 X	$1,6 \cdot 10^{-5}$	28,4	0,56
3	4 X	$0,9 \cdot 10^{-6}$	30,0	0,30
4	5 X	1,4.10-5	28,0	0,50
5	7 X	1,4.10-5	21,8	0,64
6	10 X	0,8.10-6	20,2	0,39
7	10 X	1,10.10-5	42,2	$0,23 \\ 0,49$
8	13 X	$1,6 \cdot 10^{-5}$	32,4	0,45
9	5 X	$1,10 \cdot 10^{-5}$		
10	9 X 10 X	$1,4\cdot 10^{-5}$	4 4 4	
11	10 X	$\begin{array}{c c} 0,8 \cdot 10^{-6} \\ 1,2 \cdot 10^{-5} \end{array}$		_
13	11 X	1,10.1075		
14	12 X	$2,2\cdot 10^{-5}$	N Carlo	-
15	14 X	$1,10 \cdot 10^{-5}$		
16	5 X	$1,6.10^{-5}$		
17	8 X	$0,6 \cdot 10^{-6}$	_	
18	17 X	0,8.10-6	_	
19	5 X	$1, 2 \cdot 10^{-5}$		_
20	7 X	1,8.10-4		10 Page 12 V
21	8 X	0,8.10-6		1107
22	8 X	$2.2 \cdot 10^{-5}$	-	-
23	1938 г.	6.5.10-5	-	_
24	-	$2,3\cdot 10^{-5}$	_	-
25	-	3,10-5	_	-

ние CaO/F в хибинских водах равно около 10, что необычно низко в сравнении с отношением CaO/F₂ 565,0 в рр. Москве и Волге; на это необходимо обратить внимание при попытке решения вопроса о причине заболевания крапчатостью эмали зубов в этих районах.

Небольшая минерализация хибинских вод указывает на малую степень

выщелачивания водой горных пород.

Биогеохимическая лаборатория Академия Наук СССР Поступило 29 VIII 1939

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. П. Виноградов, В. В. Данилова и Л. С. Селиванов, ДАН, XIV, № 16 (1937). ² А. П. Виноградов, Тр. биогеохим. лаб. АН СССР, IV (1936).