Доклады Академии Наук СССР 1938. том XXI, № 9

ФИЗИКА

д. в. скобельцын

ЭЛЕКТРОННОЕ РАССЕЯНИЕ БЫСТРЫХ В-ЛУЧЕЙ *

(Представлено академиком С. И. Вавиловым 15 XI 1938)

Фотографии путей в-лучей в камере Вильсона дают непосредственные и весьма детальные сведения о процессах взаимодействия быстрых заряженных частиц с атомным полем.

Особенно наглядные результаты могут быть получены этим методом в отношении механизма столкновений β-частицы с планетарными электронами тормозящей среды (газ, наполняющий камеру Вильсона).

Согласно квантово-механическим расчетам в тех случаях, когда энергия, передаваемая электрону при ударе, сколько-нибудь значительна и велика в сравнении с ионизационным потенциалом, электрон можно рассматривать как свободный. Для таких соударений характерны следовательно закономерности упругого удара (конпланарность путей частиц и т. п.). Отсюда ряд признаков, позволяющих отличить этот тип д-лучей, которые будем называть нормальными д-лучами.

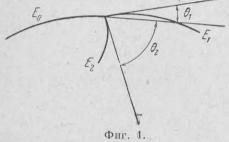
Как мною уже было отмечено (1), наряду с нормальным механизмом, который проявляется образованием «конпланарных» веток и вилок на пути β -частицы, наблюдается также появление «аномальных» вторичных частиц с резкими нарушениями баланса количества движения (см. ниже следующую заметку).

Наблюдение нормальных веток и вилок делает возможной детальную проверку выполнения законов сохранения в применении к элементарным актам в релятивистской области и изучение законов взаимодействия заряженных релятивистских частиц. Исследование нормальных δ-лучей для области энергий 400—800 ekV было выполнено Чэмпионом.

Излагаемые здесь результаты относятся к скоростям в пределах 1 000—3 000 kV (средняя энергия 1 800 kV). Кроме того проверка закономерностей релятивистского механизма упругого удара и формулы Моллера для вероятностей электронного рассеяния проводится здесь несколько иным, как нам кажется, более наглядным, чем в работе Чэмпиона, методом.

Фотографии вилок в камере Вильсона с магнитным полем при благоприятных условиях дают возможность определить 5 величин, связанных уравнениями упругого удара (величины скоростей для двух веток

^{*} Материалом для измерений, результаты которых сообщаются в этой и следующей заметках, послужили фотографии, полученные в лаборатории автора Е. Г. Степановой.


и первичной частицы и два угла, составляемые направлениями веток

с направлением первичного луча).

Имея две из этих величин, можно, пользуясь уравнениями импульсэнергии, вычислить три остальные и сравнить их с результатами непосредственного промера. Следующая таблица показывает результат сравнения в одном из таких случаев.

Имея первичную энергию E_0 и угол вылета δ -частицы, можно было в этом случае вычислить три осталь-

Результат дает след. таблица:

$$H$$
 з м.
 $E_0=1$ 350 kV; $\Theta_2=66^\circ$

$$E_0 = 1 \ 350 \ \text{kV};$$
 $\Theta_2 = 66^\circ$
 B By . $\Theta_2 = 66^\circ$
 $E_2 = 100 \ \text{kV}$ $\Theta_3 = 100 \ \text{kV}$ $\Theta_4 = 14^\circ$ $\Theta_5 = 100 \ \text{kV}$ $\Theta_6 = 100 \ \text{kV}$

Для вычислений и сравнения с результатами измерений удобно вос-

пользоваться системой координат, в которой центр инерции взаимодей-

ствующих частиц покоится.

Для перехода от системы наблюдателя к такой нормальной системе и обратно удобны следующие соотношения, которые легко получить, пользуясь релятивистскими формулами преобразования скоростей.

β — скорость первичной частицы в системе наблюдателя,

$$\beta_c$$
 — то же в нормальной системе,

$$\gamma = \frac{1}{\sqrt{1-\beta^2}}\,,$$

а — угол рассеяния в нормальной системе Фиг. 2.

 Θ_1 и Θ_2 —углы вылета вторичных частиц в системе наблюдателя, x — скорость одной из вторичных частиц в системе наблюдателя.

(Скорость света принята равной единице.)

$$\beta_c = \frac{\beta \gamma}{\gamma + 1}; \tag{1}$$

$$\beta_c = \frac{\beta \gamma}{\gamma + 1}; \qquad (1)$$

$$x = \frac{2\beta_c \cos \Theta}{1 + \beta_c^2 \cos^2 \Theta}; \qquad (2)$$

$$tg \Theta = \frac{\sin \alpha \sqrt{1 - \beta_c^2}}{1 \pm \cos \alpha} *;$$

$$\cos \alpha = \frac{tg \Theta_2 - tg \Theta_1}{tg \Theta_2 + tg \Theta_1}.$$
(3)

$$\cos \alpha = \frac{\operatorname{tg} \Theta_2 - \operatorname{tg} \Theta_1}{\operatorname{tg} \Theta_2 + \operatorname{tg} \Theta_1}. \tag{4}$$

Пользуясь (1), (2) и (3), легко получить

$$Q = mc^{2} \left\lceil \frac{(\gamma - 1)}{2} - \frac{(\gamma - 1)}{2} \cos^{2} \alpha \right\rceil, \tag{5}$$

где Q — кинетическая энергия δ -частицы (в системе наблюдателя).

Отсюда для величины отношения энергии, переданной при ударе, к энергии первичной частицы имеем:

$$A = \frac{Q}{E_0} = \frac{1 - \cos \alpha}{2} \qquad [E_0 = (\gamma - 1) \, mc^2]. \tag{6}$$

^{*} α мы полагаем меньше $\frac{\pi}{2}$.

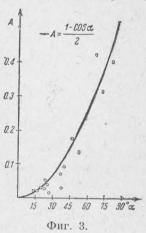
Величина $A=rac{Q}{E_0}$ связана следовательно очень простым соотношением с углом рассеяния (а) в нормальной системе и не зависит от величины энергии первичной частицы.

Уравнение (6) наиболее удобно для сравнения с данными наблюде-

ний и проверки баланса количества движения и энергии.

В тех случаях, когда были измерены оба угла $-\Theta_1$ и Θ_2 *, можно было, пользуясь соотношением (4), вычислить α . С другой стороны, энергия Q и величина отношения $\frac{Q}{E_0}$ могли быть

измерены непосредственно.


Точки, показанные на фиг. 3, отвечают отдельным таким измерениям** [по оси ординат отложены значения A, по оси абсцисс — α , вычисленное по формуле (4)].

Кривая соответствует уравнению (6).

Отступления от этой кривой в отдельных немногих случаях лежат в пределах возможных ошибок ***

Далее представляла интерес проверка формулы Моллера (3), определяющей вероятности соударения в функции угла а или, иначе говоря, закон рассеяния.

Формула Моллера для дифференциального эффективного сечения электронного рассеяния может быть написана в следующем виде:

$$\Phi(\Theta) d\Theta = \frac{\pi a^2 \sin \theta}{\beta^4}$$

$$00 + \frac{N_{exp}}{N_{Uncor}}$$

$$\Phi(\Theta) d\Theta = \frac{\pi a^2 \sin \alpha d\alpha}{\beta^4 \gamma^2} (\gamma + 1) \left[\frac{1}{\sin^4 \frac{\alpha}{2}} + \frac{1}{\cos^4 \frac{\alpha}{2}} - \frac{1}{\sin^2 \frac{\alpha}{2} \cos^2 \frac{\alpha}{2}} + \left(\frac{\gamma - 1}{\gamma} \right)^2 \left(1 + \frac{4}{\sin^2 \alpha} \right) \right]. \quad (7^{***})$$

Эффективное сечение, определяющее вероятность передачи энергии, превышающей некоторую

$$\sigma(Q) = \frac{2\pi a^2}{\beta^2 (\gamma - 1)} \left[(g - 1) \quad \lg \frac{1 - A}{A} + \frac{1}{A} + \frac{A}{1 - A} + g\left(\frac{1}{2} - A\right) - 1 \right], \tag{8}$$

где
$$a$$
 — радиус электрона, $g = \left(\frac{\gamma - 1}{\gamma}\right)^2$.

* Углы измерялись стереокомпаратором Пульфриха.

** Точки, отмеченные квадратиками и кружками, относятся к двум различным сериям наблюдений.

*** B отдельных исключительных случаях при малых ^а возможна сравнительно большая ошибка вследствие возможного рассеяния 6-частицы вблизи начала ее

**** «Полуклассическая» формула—формула Резерфорда в системе центра инер-ции с учетом квантового обмена и релятивистской величины массы (но без учета конечной скорости распространения света и зависимости массы от скорости) имеет следующий вид:

$$\frac{\pi a^2}{4\beta^4} = \frac{(\gamma+1)^3 \sin \alpha d\alpha}{\gamma^4} = \left[\frac{1}{\sin^4 \frac{\alpha}{2}} + \frac{1}{\cos^4 \frac{\alpha}{2}} - \frac{1}{\sin^2 \frac{\alpha}{2} \cos^2 \frac{\alpha}{2}} \right].$$

Пользуясь этими формулами, можно вычислить вероятность рассеяния с передачей энергии в заданном интервале ΔA или соответствующем $\Delta \alpha$ значений A и α .

Таблица и кривая фиг. 4 показывают результат сравнения расчета, выполненного по формуле (7) для средней энергии $E_0 = 1\,800\,$ ekV*:

Число б-лучей на данный интервал

ΔA	ā	Выч.	Набл.
0.005 - 0.01	11°	82	110
0.01 - 0.02	15°	42	32
0.02 - 0.05	21°	21	17
0.05 - 0.1	32°	9	3
0.1 - 0.3	52°	4.8	. 4
0.3 - 0.4	72°	0.7	0.7
> 0.4		0.5	0.3
The same of the sa	Bcero	160	166

В этой таблице учтены все длучи (на длине 210 м) с пробегом, большим 2.5 мм. Длина пробега вблизи этой нижней границы оценивалась лишь очень приблизительно. В связи с этим возможна конечно большая ошибка значения, стоящего в первой строке последней графы.

В пределах невысокой статистической точности экспериментальные значения почти для всех интервалов совпадают с вычисленными теоре-

тически.

Электронное рассеяние оказывается таким образом нормальным. Никаких значительных отступлений от закона, вытекающего из применения релятивистской квантовой механики, подобных тем, которые были нами обнаружены в случае ядерного рассеяния (в азоте), в данном случае не наблюдается.

Физико-технический институт. Ленинград. Поступило 6 XI 1938.

питированная литература

¹ Изв. Акад. Наук СССР, сер. физ., № 1—2, 75 (1938). ² F. Champion, Proc. Roy. Soc., 137, 688 (1932). ³ C. Moller, Ann. der Phys., 14, 531 (1932).

^{*} В случае более «мягких» ударов $(Q \lesssim 50 \text{ kV})$ угол рассеяния первичной частицы (Θ_1) не мог быть измерен. Угол α при построении кривой фиг. 4 определялся из уравнения (6) по измеренной величине отношения $\frac{Q}{E_0}$. Q вычислялось по измеренному пробегу.