Доклады Академии Наук СССР 1940. том XXVI, № 2

MATEMATUKA

н. ефимов

ВЗГИБАНИЕ ОКРЕСТНОСТИ ПАРАБОЛИЧЕСКОЙ ТОЧКИ ПОВЕРХНОСТИ

(Представлено академиком А. Н. Колмогоровым 22 XI 1939)

Пусть U обозначает аналитическую поверхность, определенную в декартовых ортогональных координатах уравнением

$$z = \frac{1}{2!} (ax^2 + 2bxy + cy^2) + \frac{1}{3!} (a, x^3 + \dots) + \dots$$
 (\alpha)

при условии

$$ac-b^2=0, |a|+|b|+|c|>0$$
 (a)

(нулевая точка является параболической и порядок прикосновения

поверхности с плоскостью z=0 равен единице).

Если U имеет в нулевой точке определенный индекс [см. (1)], то могут быть три типа строения U вблизи этой точки, в соответствии с возможными значениями индекса: -1, 0, +1. В заметке (2) нами сформулирована теорема, согласно которой в этом случае значение индекса определяется метрикой поверхности U; однако метрика предполагалась подчиненной некоторым ограничениям. Мы укажем сейчас ряд предложений, которые позволяют формулировать эту теорему с исключением из рассмотрения лишь весьма узкого класса метрик, и которыми по существу вопрос выясняется до конца.

Обозначим через S(u,v) двухмерное многообразие с линейным эле-

ментом

$$ds^2 = E du^2 + 2F du dv + G dv^2$$
,

коэффициенты которого $E=E\left(u,v\right),\ F=F\left(u,v\right),\ G=G\left(u,v\right)$ мы предполагаем регулярными в окрестности точки $u=0,\ v=0.$ Обозначим далее через $K\left(u,v\right)$ гауссову кривизну $S\left(u,v\right)$ и положим $K\left(0,0\right)=0,\ K\left(u,v\right)\equiv0.$

Рассмотрим пучок геодезических, проходящих через точку u=0, v=0. Условимся для краткости дальнейших формулировок называть геодезическую этого пучка особой в случае, если она состоит из особых точек поля кривизны $K=K\left(u,v\right)$, т. е. если в каждой ее точке

$$K=0$$
 m $dK=0$.

Мы также будем называть особой или исключительной метрику многообразия S(u,v), если в числе геодезических пучка при точке $u=0,\ v=0$ найдутся по крайней мере две особые. Вполне очевидно, что многообразия указанного типа являются редкими; этим оправдывается употребляемое название.

Каким бы ни было многообразие S(u,v), существует бесконечное множество поверхностей, представляемых уравнениями вида (а), изометричных многообразию $S\left(u,v\right)$ и на которых нулевая точка соответствует точке u = 0, v = 0. Обозначим множество этих поверхностей через $\{U\}$. Как было отмечено в заметке (2), в $\{U\}$ существует также бесконечное множество поверхностей, на которых нулевая точка имеет определенный индекс (-1, 0 или +1); это множество мы обозначим через $\{\overline{U}\}$, множество остальных поверхностей, т. е. не имеющих определенного индекса нулевой точки,—через $\{\overline{U}\}$.

Имеют место следующие предложения:

а) Если ү—неособая геодезическая S(u, v) в пучке при точке u = 0, v=0, то ни одна из поверхностей $\{U\}$ не касается плоскости z=0вдоль γ . (Для геодезических, вдоль которых $K \neq 0$, это утверждение вполне тривиально.)

b) Если γ —особая геодезическая, то всякая поверхность из $\{U\}$, асимптотическое направление которой в нулевой точке совпадает с на-

правлением γ , во всех точках линии γ касается плоскости z=0.

Предположим теперь, что через точку $u=0,\ v=0$ проходят параболические линии $\pi_1, \pi_2, \dots, \pi_n$, не являющиеся геодезическими [множество всех параболических линий, проходящих через точку u=0, v = 0, будет конечным ввиду аналитичности метрики S(u, v)].

Имеет место предложение

c) Совокупность $\{\overline{U}\}$ может содержать лишь конечное множество поверхностей, касающихся плоскости z=0 вдоль какой-нибудь из линий

 π_1, \ldots, π_n .

Для доказательства достаточно повторить рассуждения А. Д. Александрова, с помощью которых доказывается однозначная определенность замкнутых поверхностей типа T(3); несколько проще это можно

доказать непосредственно, используя уравнение Дарбу (4) *. Рассмотрим вместе с каждой поверхностью из $\{U\}$ ее зеркальное отражение относительно плоскости z = 0. Пару таких симметричных

поверхностей будем обозначать через П.

Совокупность пар, построенных для поверхностей из $\{\overline{U}\}$ и $\{\overline{U}\}$,

обозначим соответственно через $\{\overline{\Pi}\}$ и $\{\overline{\overline{\Pi}}\}$. Регулярным изгибанием пары Π мы называем далее совокупность Π_t пар, уравнения которых регулярны по u, v, t вблизи u = 0, v = 0,t=0 и $\Pi_{t=0}\equiv \Pi$.

Опираясь на предложения а), b) и с), можно доказать следующую

 Π емма 1. Для того чтобы при любом выборе двух пар $\overline{\Pi}$ и $\overline{\Pi}'$ из $\{\overline{\Pi}\}$ существовало регулярное изгибание $\overline{\Pi}_t$ $(0\leqslant t\leqslant 1),\ \overline{\Pi}_{t=0}\equiv \overline{\Pi},$ $\overline{\Pi}_{t=1}$ \equiv $\overline{\Pi}'$, такое, что все $\overline{\Pi}_t$ принадлежат к $\{\overline{\Pi}\}$, необходимо и достаточно, чтобы метрика S(u,v) не была исключительной.

Лемма утверждает, таким образом, что в случае неисключительной метрики любую поверхность из совокупности $\{\overline{U}\}$ можно регулярно изгибать в любую другую поверхность из $\{\overline{U}\}$ или в ее зеркальное отражение так, чтобы в течение этого изгибания индекс нулевой точки все время оставался определенным **.

* Вопрос о возможности какого-нибудь изгибания поверхности в ей изометричную исследован Е. Levy и Н. Schilt'ом (5).

^{*} Подробные доказательства всех предложений этой заметки будут опубликованы в Математическом сборнике.

Лемма 2. Если при регулярном изгибании поверхности какалнибудь ее параболическая точка в каждый момент имеет определенный индекс, то значение индекса при этом изгибании не меняется.

Доказательство этой леммы усматривается непосредственно. Из лемм

1 и 2 вытекает теорема

Теорема. Если метрика многообразия S(u,v) не является исключительной, то для всех поверхностей, представляемых уравнением вида (a) и изометричных S(u,v), на которых нулевая точка имеет определенный индекс, значение индекса одно и то же.

Ограничение в этой теореме существенно. Пример: многообразие

S(u, v) с особой метрикой, определенной линейным элементом

$$ds^2 = du^2 + (1 + u^5v^3) dv^2$$

может быть реализовано в виде поверхностей, представляемых уравнением (α), среди которых существуют как выпуклые в точке $u=0,\ v=0$ (индекс = +1), так и седлообразные (индекс = -1). В самом деле, предполагая поверхность определенной уравнениями

$$x = x(u, v) y = y(u, v) z = z(u, v)$$
 (\beta)

зафиксируем ее положение относительно координатных осей с помощью условий

$$x(0,0) = y(0,0) = z(0,0) = 0,$$
 $x_u(0,0) > 0,$ $x_v(0,0) = 0,$ $y_u(0,0) = 0,$ $y_v(0,0) > 0,$ $z_u(0,0) = 0,$ $z_v(0,0) = 0.$

Находя решение уравнения Дарбу (4) один раз при начальных условиях

$$z(0, v) = \frac{1}{2}v^2, \quad z_u(0, v) = +v$$

и другой раз при начальных условиях

$$z(0, v) = \frac{1}{2}v^2, \quad z_u(0, v) = -v,$$

получим соответственно

$$z(u,v) = \frac{1}{2}(u+v)^2 - \frac{1}{112}u^5v^3 + \dots$$

И

$$z(u,v) = \frac{1}{2} (u-v)^2 - \frac{1}{112} u^5 v^3 + \dots$$

Легко видеть, что кривая

$$\frac{1}{2}(u+v)^2 - \frac{1}{412}u^5v^3 + \dots = 0$$

имеет в точке $u=0,\ v=0$ изолированную особенность, а для кривой $\frac{1}{2}\,(u-v)^2-\frac{1}{112}\,u^5v^3+\ldots=0$

$$\frac{1}{2}(u-v)^2 - \frac{1}{112}u^5v^3 + \dots = 0$$

точка u = 0, v = 0 является точкой самоприкосновения.

Таким образом в первом случае поверхность (β) в нулевой точке выпукла, во втором-седлообразна.

Воронежский государственный университет

Поступило 28 XI 1939

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Ефимов, ДАН, XXIII, № 9 (1939). ² Н. Ефимов, ДАН, XXV, № 3 (1939). ³ А. Д. Александров, Матем. сборн., 4 (46). 4 (1938). ⁴ Віапсһі, Lezioni... 1, § 436 (). ⁵ Н. Schilt, Compositio Mathem., 5 (1937).