Доклады Академии Наук СССР 1940. том XXVI, № 2

MATEMATURA

Академик А. Н. КОЛМОГОРОВ

СПИРАЛЬ ВИНЕРА И НЕКОТОРЫЕ ДРУГИЕ ИНТЕРЕСНЫЕ КРИВЫЕ В ГИЛЬБЕРТОВСКОМ ПРОСТРАНСТВЕ

Мы рассмотрим здесь некоторые частные случаи кривых, которым посвящена моя предыдущая заметка «Кривые в гильбертовском пространстве, инвариантные по отношению к однопараметрической группе движений» (1).

Преобразованием подобия в гильбертовском пространстве H будем называть любое преобразование A в самого себя, представимое в виде

$$A = a + qUx$$
,

где *а*—фиксированный элемент пространства *H*, *U*—унитарный оператор а *а*—пейстрительное писло больное и у д *g*

тор, а q—действительное число, большее нуля.

Определение. Функция $\xi(t)$ класса \Re принадлежит классу $\mathfrak A$, если при любом действительном $k \neq 0$ существует такое преобразование подобия A_k , что

$$\xi\left(kt\right) = A_k \xi\left(t\right)$$

для всех t.

Если заменить пространство Гильберта в наших определениях конечномерным унитарным пространством, то единственными функциями класса $\mathfrak A$ будут линейные функции вида

$$\xi(t) = ut + v$$

(где u и v—фиксированные элементы пространства). Тем более интересно, что в гильбертовском пространстве существуют другие типы функций класса $\mathfrak A$. Геометрически каждая функция класса $\mathfrak A$ определяет кривую в пространстве H, инвариантную по отношению к группе преобразований подобия, зависящих от двух параметров, которые позволяют отобразить кривую на самою себя так, что любая заданная пара ее точек x и $y \neq x$ перейдет в любую другую заданную пару точек x' и $y' \neq x'$, лежащих на той же кривой.

чек x' и $y' \neq x'$, лежащих на той же кривой. Теорема 6. Функция $B_{\xi}(\tau_1, \tau_2)$, соответствующая функции $\xi(t)$ класса \mathfrak{A} , может быть представлена в виде

$$B_{\xi}(\tau_1, \tau_2) = c[|\tau_1| \Upsilon + |\tau_2| \Upsilon - |\tau_1 - \tau_2| \Upsilon],$$

где с и ү-действительные константы, удовлетворяющие неравенствам

$$c \geqslant 0$$
, $0 \leqslant \gamma \leqslant 2$.

Очевидно, что в случае $B_{\xi}(\tau_1,\,\tau_2)$, не тождественно равного нулю, константы

 $c = c_{\xi}$ и $\gamma = \gamma_{\xi}$

однозначно определяются по функции $E_{\xi}(\tau_1,\tau_2)$, а следовательно, и по самой функции $\xi(t)$. Ясно также, что $B_{\xi}(\tau_1,\tau_2)$ может быть тождественно равным нулю только в случае, если $\xi(t)$ постоянно. В дальнейшем мы отбрасываем этот исключительный случай и считаем, что

$$\gamma_{\xi} > 0$$
, $c_{\xi} > 0$.

Мы видим, таким образом, что функции класса $\mathfrak A$ характеризуются с точностью до преобразований движения в пространстве H инвариантами α_{ξ} , c_{ξ} и γ_{ξ} . Что касается соответствующих кривых, то они определяются с точностью до конгруэнтности инвариантами α_{ξ} и γ_{ξ} [изменение же c_{ξ} не меняет вида кривой, изображаемой функцией $\xi(t)$, а связано лишь с изменением выбора параметра t].

Теорема 7. Любым а $(=0,1,2,\ldots,u$ ли $\infty)$, c (c>0) и γ $(0<\gamma\leqslant 2)$ соответствует хотя бы одна функция $\xi(t)$ класса $\mathfrak A$ c

$$\alpha_{\xi} = \alpha, \quad c_{\xi} = c, \quad \gamma_{\xi} = \gamma.$$

Для функции класса $\mathfrak{A},$ соответствующей данным $\mathfrak{a},$ c и $\gamma,$ имеем при $\gamma < 2$

$$heta_{\xi} = 0, \quad F_{\xi}(\Delta_{\lambda}) = \frac{c}{D} \int_{\Delta_{\lambda}} \frac{d\lambda}{|\lambda|^{\gamma+1}},$$

где

$$D=4$$
 $\int\limits_{0}^{\infty} \frac{\left(\sinrac{\lambda}{2}
ight)^{2}}{\lambda^{\gamma+1}} d\lambda.$

В случае же $\gamma = 2$ имеем

$$\theta_{\xi} = 2c$$
, $F_{\xi}(\Delta_{\lambda}) = 0$.

В последнем случае ($\gamma = 2$) сама функция $\xi(t)$ линейна (т. е. геометрически изображает прямую в пространстве H).

Рассмотрим теперь специально класс \mathfrak{V} функций $\xi(t)$ класса \mathfrak{A} , для которых

$$\gamma_{\xi} = 1$$
.

Кривые, соответствующие этому классу функций, назовем с п и р ал я м и В и н е р а. В соответствии с вышесказанным спираль Винера определяется с точностью до конгруэнтности единственным инвариантом α_{ξ} . Если же интересоваться лишь расположением кривой в соответствующем пространстве H_{ξ} , то можно сказать, что все спирали Винера конгруэнтны друг другу. Точно это обозначает следующее: для любых двух спиралей Винера, определяемых функциями ξ_1 и ξ_2 , существует взаимно однозначное соответствие между H_{ξ_1} и H_{ξ_2} вида

$$y = a + Ux$$

тде a—фиксированный элемент H_{ξ_1} , а U—изометрический линейный оператор, которое преобразует первую кривую во вторую.

T е о р е м а 8. Для того чтобы функция класса \Re принадлежала классу \Re , необходимо и достаточно, чтобы для любых двух непересекающихся интервалов

$$s_1 < t < t_1, \quad s_2 < t < t_2$$

оси t имело место равенство

$$[\xi(t_1) - \xi(s_1), \quad \xi(t_2) - \xi(s_2)] = 0.$$

На геометрическом языке теорему 8 можно выразить так: спирали Винера вполне характеризуются двумя следующими свойствами:

1) они инвариантны по отношению к некоторой НОГ движений;

2) их хорды, соответствующие двум неперекрывающимся дугам, ортогональны.

Откладывая доказательство перечисленных теорем до другой публикации, дадим здесь несколько дополнительных замечаний и примеров.

1) При $\gamma < 2$ функция $\xi(t)$ класса $\mathfrak A$ не дифференцируема (как в смысле

сильной, так и в смысле слабой сходимости).

2) Если $\xi(t)$ принадлежит классу \mathfrak{A} , то различным значениям t соответствуют различные ξ . Это свойство не обязательно для функций класса \Re , среди которых имеются, в частности, периодические.

3) Значения функции $\xi(t)$ класса $\mathfrak A$ неограничены по норме. Так как значения функции класса $\mathfrak R_0$ имеют постоянную норму, то отсюда

вытекает, что классы $\mathfrak A$ и $\mathfrak R_0$ не пересекаются.

4) Пример реализации спирали Винера. Рассмотрим гильбертовское пространство H_0 комплексных функций f(z) действительного аргумента $z(-\infty < z < +\infty)$ с конечным интегралом

$$\int_{-\infty}^{+\infty} |f(z)|^2 dz,$$

в котором скалярное произведение определено обычной формулой

$$f(f,g) = \int_{-\infty}^{+\infty} f(z) \frac{1}{g}(z) dz.$$

При $t \ge 0$ положим $\xi(t)$ равным функции f(z), которая равна 1, если $0 \le z \le t$, и равна 0 для остальных z.

При $t \le 0$ положим $\xi(t)$ равным функции f(z), которая равна —1,

если $t \leqslant z \leqslant 0$, и равна 0 для остальных z.

Легко проверить, что f(z) удовлетворяет условиям теоремы 8.

5) Применение функций классов \Re , \Re_0 , \Re и \Re в теории вероятностей. Пусть дано какое-либо поле вероятностей (для определений см. мои «Основные понятия теории вероятностей», Москва, 1936). Комплексные случайные величины x этого поля с конечным математическим ожиданием

$$E|x|^2$$

образуют, если их скалярное произведение определить формулой

$$(x, y) = E(xy),$$

унитарное пространство R конечного или бесконечного числа измерений Наиболее интересен случай бесконечно мерного пространства со счетным базисом. В этом случае R удовлетворяет всем аксиомам гильбертовского пространства. Если каждому t поставлена в соответствие случайная величина $\xi(t)$, то говорят, что $\xi(t)$ есть случайная функция. Будем считать что $\xi(t)$ при каждом t принадлежит R и непрерывна в смысле сходимости по норме в R. Тогда

а) Принадлежность $\xi(t)$ к классу \Re_0 совпадает со стационарностью случайной функции $\xi(t)$ в широком смысле (в теории вероятностей играет большую роль также другое понятие «стационарности в узком смысле», на котором мы здесь не останавливаемся). Стационарные в широком смысле случайные функции подробно изу-

чены А. Я. Хинчиным (2).

b) Если случайная функция $\xi(t)$ принадлежит классу \Re , то ее естественно назвать случайной функцией со стационарными (в широком смысле) приращениями. Их детальное изучение являлось одной из очередных задач теории вероятностей и может быть проведено на основе изложенных нами в (1) результатов.

с) Требование

$$[\xi(t_1) - \xi(s_1), \quad \xi(t_2) - \xi(s_2)] = 0$$

теоремы 8 на языке теории вероятностей обозначает равенство нулю коэффициента корреляции между приращениями $\xi(t)$ на двух непересекающихся интервалах оси t. Таким образом случайные функции класса \mathfrak{V} —это функции со стационарными (в широком смысле) и некоррелированными приращениями.

Частный случай такого рода случайных функций, встречающийся при изучении броуновского движения, и привел Винера еще в 1923 г. [см. (3)] к рассмотрениям, которые в переводе на геометриче-

ский язык приводят к описанным выше спиралям Винера.

Поступило 28 XI 1939

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Н. Колмогоров, ДАН, XXVI, № 1 (1939). ² А. Я. Хинчин, Успехи матем. наук, стр. 42—56 (1938). ³ Н. Wiener, Journ. of Math. and Physics (1923).