
ФИЗИЧЕСКАЯ ХИМИЯ

В. ШТЕРН, Б. КРАВЕЦ и А. СОКОЛИК

ВЛИЯНИЕ CO₂ НА САМОВОСПЛАМЕНЕНИЕ СМЕСИ ГЕКСАНА С ВОЗДУХОМ

(Представлено академиком Н. Н. Семеновым 25 VII 1938)

В результате исследования самовоспламенения пентано-воздушных смесей при коротких задержках (1) была предложена гипотеза, объясняющая установленный нами факт неизменяемости задержки воспламенения в верхней зоне температур (400—600°) торможением предпламенных реакций конечными продуктами окисления (СО2 и Н2О). Для проверки этой

гинотезы мы проводим исследование влияния на самовосиламенение смеси гексана с воздухом (3.5% $\rm C_6H_{14}$) различных продуктов окисления, используя прежнюю методику регистрации задержки воспламенения, но при более тщательной очистке взрывного сосуда, обеспечивающей достаточную устойчивость результатов. Определяя при различных температурах предельное давление самовоспламенения $P_{\rm lim.}$, мы наблюдали значительное повышение $P_{\rm lim.}$ от ничтожных концентраций $\rm CO_2$ порядка $1-2\times 10^{-3}$ моля. Этот эффект с точностью воспроизводится в большом числе последовательных опытов с чистой гексано-воздушной смесью и при-

месью CO_2 . Самовоспламенение исчезает даже от присутствия тех следов CO_2 , которые остаются в бомбе, предварительно наполненной CO_2 , после ее откачки масляным насосом.

Как видно из фигуры, примесь CO_2 приводит к сдвигу области воспламенения к более высоким давлениям. Действие CO_2 таким образом вполне аналогично действию PbEt_4 и прямо противоположно действию ацетальдегида, снижающего $P_{\mathrm{lim.}}$, по опытам Тоуненд с сотрудниками (2).

Как ясно из фигуры, в некотором узком интервале давлений 0.1% CO_2 приводит к резкому повышению температуры самовоспламенения с 340 до 550° , как это также имеет место в случае примеси $PbEt_4$. Эффект CO_2 резче выражен в низкотемпературной зоне и почти исчезает при температурах выше 550° . Отметим, что задержки воспламенения для исследованной смеси гексана остаются неизменными в пределах температур 350— 590° и незначительно сокращаются при дальнейшем повышении температуры.

Примесь CO₂ кроме того приводит к увеличению задержки воспламенения, как это видно из приводимых ниже примерных опытных данных:

$$t^\circ = 320^\circ, \ P = 3.14 \ \text{at}$$

$$\% \ \text{CO}_2 \ \dots \ 0 \ 4 \ 5 \ 9$$

$$\texttt{TCCEK} \ \dots \ 1.4 \ 4.25 \ 4.75 \ 4.4$$

$$t^\circ = 590^\circ, \ P = 0.9 \ \text{at}$$

$$\% \ \text{CO}_2 \ \dots \ 0 \ 0.9 \ 4.8 \ 4.5 \ 9$$

$$\texttt{TCCEK} \ \dots \ 0.7 \ 0.9 \ 0.7 \ 4 \ 4.1$$

$$t^\circ = 590^\circ, \ P = 1.75 \ \text{at}$$

$$\% \ \text{CO}_2 \ \dots \ 0 \ 0.5 \ 4 \ 2 \ 3 \ 4.5 \ 9$$

$$\texttt{TCCEK} \ \dots \ 0.3 \ 0.4 \ 0.7 \ 0.5 \ 0.5 \ 0.5 \ 0.4$$

Удлинение задержки воспламенения, связанное с торможением предпламенных реакций, наблюдается лишь при относительно небольших концентрациях CO_2 (до 5%). Дальнейшее увеличение концентрации CO_2 приводит к сокращению задержки, что связано повидимому с обычным эффектом разбавления инертным газом, ускоряющим цепные реакции, предшествующие воспламенению.

Институт химической физики. Ленинград. Поступило 27 VII 1938.

ЦИТИРОВАННАЯ, ЛИТЕРАТУРА

 1 III терн, Кравец и Сокелик, Acta Physico-chimica (в печати). 2 D. T. A. Townend a. Z. Z. Cohen, Chemistry a. Industry (1934); D. T. A. Townend, Chem. Rev. (1937).