А. Г. ПИНСКЕР

о расширении получнорядоченных пространств

¶ (Представлено академиком С. Н. Бернштейном 16 VIII 1938)

Укажем регулярный процесс, позволяющий для всякого линейного полуупорядоченного пространства типа K_{5} (1) (пространство Л. В. Канторовича с аксиомами I-V) построить, вообще говоря, более широкое пространство также типа K_5 , именуемое в дальнейшем «расширением» исходного пространства. Расширенные пространства обладают свойствами, не имеющими места в произвольных пространствах типа K_5 (подробному исследованию этих свойств будет посвящена особая заметка), в частности расширение расширенного пространства ему изоморфно. Операция расширения пространств дает повод ввести в рассмотрение некоторое обобщение понятии (о)-сходимости и (*)-сходимости, а именно: «расширенную (о)-сходимость» и «расширенную (*)-сходимость»; во многих конкретных пространствах эти сходимости имеют простое и естественное значение. Так например, расширением пространства L (интегрируемых по Лебегу функций) является пространство S(измеримые функции); расширенной (о)-сходимостью в L будет сходимость почти везде; расширенной (*)-сходимостью будет сходимость по мере.

1. Пусть Y — линейное полуупорядоченное пространство типа $K_{\mathbf{5}}.$ Назовем комплексом всякое множество $A = \{a\}$ положительных (включая и нуль) элементов из Y, удовлетворяющее следующим двум

условиям:

1) Если $a \in A$ и a' < a $(a' \ge 0)$, то и $a' \in A$.

2) Если E есть ограниченное подмножество A, то

sup $E \in A$.

Условимся комплексы обозначать большими буквами латинского алфавита, а элементы пространства У-малыми буквами латинского алфавита.

Положим $A \leqslant B$, если $A \subseteq B$.

 Π емм а 1. Множеество $\tilde{Y} = \{A, B, \dots\}$ всевозможных комплексов из У есть полуупорядоченное пространство. Действительно, аксиомы:

A) $A \leqslant A$;

B) если A < B и B < C, то A' < C;

C) каковы бы ни были элементы A и B, существуют C, D такие, что C < A, B < D;

всякое ограниченное сверху множество имеет верхнюю точную границу;

имеют место в \widetilde{Y} , причем D) выполняется в наиболее общей форме, а именно: всякое множество комплексов имеет supremum.

Пусть $E = \{A\}$ — множество комплексов, $E \subset \widetilde{Y}$, тогда

$$\sup E = \overline{\sum} A$$
,

где $\overline{\Sigma A}$ есть совокупность элементов Y, принадлежащих комплексам A, дополненная supremum'ами всевозможных ограниченных множеств, составленных из этих элементов (при проверке этого утверждения удобно воспользоваться тождеством:

$$x = \sup_{\mathbf{x} \in \mathbf{A}} \left\{\inf\left(x, \ y_{\mathbf{x}}
ight)
ight\}, \ \mathrm{если} \ x < \sup_{\mathbf{x} \in \mathbf{A}} \left\{y_{\mathbf{x}}
ight\}
ight).$$

Определим в \tilde{Y} операции: сложения A+B, умножения на неотрицательное число λA ($\lambda \geqslant 0$) и вычитания A-B ($A \geqslant B$). Положим $A+B=\left\{a+b\right\}$, где a и b- всевозможные пары элементов

Положим $A+B=\{a+b\}$, где a и b—всевозможные пары элементов из A и B ($a\in A$, $b\in B$); $\lambda A=\{\lambda a\}$ ($a\in A$, $\lambda \geqslant 0$) и $A-B=\{\overline{a-\sup_{b<a}\{b\}}\}==\{\overline{a-b^*}\}$ ($A\geqslant B$, $a\in A$, $b\in B$, $\sup_{b<a}\{b\}=b^*$) (черта означает, что множество $\{a-b^*\}$ дополнено supremum'ями всех его ограниченных подмножеств). Легко показать, что A+B, λA ($\lambda \geqslant 0$) и A-B ($A\geqslant B$) суть комплексы.

Лемма 2. Для комплексов справедливы следующие соотношения:

a) A + B = B + A;

b) (A+B)+C=A+(B+C);

c) $\lambda(A+B) = \lambda A + \lambda B$ $(\lambda \ge 0)$;

d) $(\lambda_1 + \lambda_2) A = \lambda_1 A + \lambda_2 A \quad (\lambda_1, \lambda_2 \geqslant 0);$

e) $\lambda_1(\lambda_2 A) = \lambda_1, \lambda_2 A$ $(\lambda_1, \lambda_2 \geqslant 0);$

f) $1 \cdot A = A$;

g) (A - B) + B = A $(A \ge B)$.

Проверим например¹ g). Пусть $c \in A - B$ и $c = a - b^*$, $b \in B$; имеем: $c + b = a - b^* + b = \sup{(a,b)} + \inf{(a,b)} - b^* \leqslant \sup{(a,b)}$, так как $\inf{(a,b)} \leqslant b^*$; далее, $a,b \in A$, следовательно $\sup{(a,b)} \in A$ и $c + b \in A$. Пусть $c = \sup{a - b^*}$, тогда $c + b = \sup{a - b^*} + b = \sup{a - b^* + b} \leqslant \sup{\sup{a,b}}$ и значит $c + b \in A$. Этим доказано неравенство: $(A - B) + B \leqslant A$. Покажем, что $(A - B) + B \geqslant A$. Действительно, пусть $a \in A$, тогда $a = (a - b^*) + b^*$ и $a \in (A - B) + B$. Отсюда следует справедливость g).

2. Множество всех комплексов Y обладает не всеми свойствами линейного множества, так например, из X'+A=X''+A, вообще говоря, не следует X'=X''; чтобы устранить это, введем понятие конечного комплекса, а именно: комплекс A будем называть конечным, если, каков бы ни был элемент $a_0 \in Y$, $a_0 > 0$, A может принадлежать не более конечного числа элементов вида $\{na_0\}$ $(n=1,2,\ldots)$. В этом случае будем писать $A < +\infty$.

Множество конечных комплексов A, принадлежащих \widetilde{Y} , обозначим через \overline{Y}_{+} .

Лемма 3.

a) Ecau $A,B<+\infty$, mo $A+B<+\infty$.

b) Ecau $A < +\infty$, mo $u \lambda A < +\infty$ ($\lambda \ge 0$).

c) Ecau $A < +\infty$ u A > B, mo $B < +\infty$ $u A - B < +\infty$.

 ${
m d}$) Если ${
m A_0}$ < + ∞ и ${
m A_0}$ - верхняя граница множества ${
m \{A\}}$, то $\begin{array}{l} \sup A < + \infty \ . \\ \mathrm{e)} \ E c \pi u \ A < + \infty \ u \ B > 0, \ mo \ A + B > A. \\ \mathrm{f)} \ E c \pi u \ A, X', X'' < + \infty \ u \ X' + A = X'' + A, \ mo \ X' = X''. \\ \mathrm{g)} \ E c \pi u \ A < + \infty \ u \ A \geqslant B + C, \ mo \ A - (B + C) = (A - B) - C. \end{array}$

Наметим доказательства a) и f).

а) Предположим противное, тогда существует $c_0>0,$ $a_n\in A$ и $b_n \in B$ такие, что $nc_0 \in A + B$ и $a_n + b_n = nc_0$ (n = 1, 2 ...). Так как $\overline{\lim}_{n\to\infty} \left(\frac{1}{n} a_n + \frac{1}{n} b_n \right) = c_0 > 0 \quad \text{if} \quad \overline{\lim}_{n\to\infty} \left(\frac{1}{n} a_n + \frac{1}{n} b_n \right) \leqslant \overline{\lim}_{n\to\infty} \left(\frac{1}{n} a_n \right) +$ $+\overline{\lim_{n\to\infty}}\left(\frac{1}{n}\,b_n\right)$, то по крайней мере один из верхних пределов: $\overline{\lim_{n\to\infty}}\left(\frac{1}{n}\,a_n\right)$ и $\overline{\lim}_{n\to\infty}\left(\frac{1}{n}\,b_n\right)$ больше нуля; пусть например $\overline{\lim}_{n\to\infty}\left(\frac{1}{n}\,a_n\right)=a_0>0$, в таком случае $\sup\left(\frac{1}{n}a_n, \frac{1}{n+1}a_{n+1}, \ldots\right) \geqslant a_0$ и $\sup\left(a_n, \frac{n}{n+1}a_{n+1}, \ldots\right) \geqslant$ $\geqslant na_0$ $(n=1,2,\dots)$, но $\sup\left(a_n,rac{n}{n+1}a_{n+1},\dots
ight)\in A$ и следовательно $na_0 \in A$, что невозможно.

f). Прежде всего можно показать, что

$$\sup (X', X'') + A = X' + A = X'' + A.$$

Если $X' \neq X''$, то $\sup{(X', X'')}$ больше, например X', тогда по лемме 2, g) $[\sup{(X', X'')} - X'] + X' = \sup{(X', X'')}$ и $[\sup{(X', X'')} - X'] + X' + X''$ +A=X'+A, что невозможно [по е)].

 \mathbb{T} емм а 4. Множество конечных комплексов \overline{Y}_+ изоморфно совокупности положительных (включая нуль) элементов некоторого линейного

полуупорядоченного пространства типа K_5 .

Рассмотрим множество $\overline{Y} = \{(A, B)\}$ возможных пар элементов из \overline{Y}_+ . Положим (A,B)>0, если A>B; (A,B)+(C,D)=(A+C,B+D); $\lambda(A,B)=(\lambda A,\lambda B)$ при $\lambda>0$ и $\lambda(A,B)=(-\lambda B,-\lambda A)$ при $\lambda<0$. Отсюда следует: (A,B)-(C,D)=(A+D,B+C); (A,B)>(C,D), если A+D>B+C; (A,B)=(C,D), если A+D=B+C; (A,B)=0, если A+D=B+C; если A+D+D=B+C; если A+D+D=B+C; если A+D+D+D

Множество $\overline{Y} = \{(A, B)\}$ есть линейное множество. Действительно, в \overline{Y} выполняются нижеследующие семь условий, характеризующие линейное множество:

1. (A, B) + (C, D) = (C, D) + (A, B).

2. [(A, B) + (C, D)] + (E, F) = (A, B) + [(C, D) + (E, F)].3. Ms (C, D) + (A, B) = (C', D') + (A, B) energy (C, D) = (C', D').4. $\lambda [(A, B) + (C, D)] = \lambda (A, B) + \lambda (C, D).$

5. $(\lambda_1 + \lambda_2) (A, B) = \lambda_1 (A, B) = \lambda_2 (A, B)$. 6. $\lambda_1 [\lambda_2 (A, B)] = \lambda_1 \lambda_2 (A, B)$.

7. $1 \cdot (A, B) = (A, B)$

Покажем например 3). Если (C,D)+(A,B)=(C',D')+(A,B), то (C+A,D+B)=(C'+A,D'+B) и C+A+B+D'=D+B+A+C' или (C+D')+(A+B)=(D+C')+(A+B); применяя лемму 3, f), заключаем C+D'=D+C', т. е.

$$(C, D) = (C', D').$$

В множестве \overline{Y} выполнены также аксиомы $\mathrm{I-V}$ линейного полуупорядоченного пространства, а именно:

I. Если (A, B) > 0, то невозможно (A, B) = 0.

II. Если (A, B) > 0 и (C, D) > 0, то (A, B) + (C, D) > 0.

III. Для любого (A, B) найдется (C, D) такое, что (C, D) > 0 м (C, D) - (A, B) > 0.

IV. Если $\lambda > 0$ и (A, B) > 0, то $\lambda(A, B) > 0$.

V. Всякое ограниченное сверху множество E имеет точную верхнюю границу, $\sup E$.

Аксиомы I — IV проверяются без труда. Пусть $E = \{(X_{\xi}, Y_{\xi})\}$ множе-

ство элементов из \overline{Y} и (A,B)— верхняя граница E, тогда $\sup_{\xi<\vartheta}E=(A,B+\inf_{\xi<\vartheta}\{(A+Y_\xi)-(B+X_\xi)\}.$

$$\sup_{\xi < \theta} E = (A, B + \inf_{\xi < \theta} \{ (A + Y_{\xi}) - (B + X_{\xi}) \}.$$
 (*)

Можно показать, что множество \overline{Y}_+ изоморфно совокупности положительных элементов из \overline{Y} и, так как по определению верхней границы $(A+Y_{\xi}) \gg (B+X_{\xi})$, то $\inf_{\xi < \vartheta} \left\{ (A+Y_{\xi}) - (B_{\xi} + X_{\xi}) \right\}$ имеет смысл. Справедливость равенства (*) вытекает из следующих неравенств:

$$A + Y_{\xi} \geqslant B + X_{\xi} + \inf_{\xi < \vartheta} \left\{ A + Y_{\xi} \right\} - (B + X_{\xi}) \right\},$$

иначе говоря,

$$\sup_{\xi<\vartheta}E\geqslant (X_{\xi},\ Y_{\xi}).$$

С другой стороны, пусть (C, D)-произвольная верхняя граница E, помощью леммы 3, д) можно показать, что

$$(C, D) \geqslant (C, D + \inf_{\xi < \vartheta} \{ (C + Y_{\xi}) - (D + X_{\xi}) \}) =$$

$$= (A, B + \inf_{\xi < \vartheta} \{ (A + Y_{\xi}) - (B + X_{\xi}) \},$$

в \overline{Y} и имеет место

Tеорема 1. \overline{Y} есть линейное полуупорядоченное пространство

muna K5.

Пространство, образованное из У указанным выше процессом, назовем расширением пространства Y. Термин «расширение» оправдывается следующей теоремой:

Теорема 2. Всякое пространство содержится в своем расширении. Назовем комплекс ограниченным, если составляющее его множество элементов из Y ограничено. Совокупность $\{(A, B)\}$ элементов из Y, где A и B — ограниченные комплексы, изоморфна пространству Y.

В частности, если всякий конечный комплекс пространства У огра-

ничен, У изоморфно У.

Теорема 3. Расширение расширенного пространства ему изоморфно.

3. Пусть Y — пространство типа K_5 и \overline{Y} — его расширение. Всякую последовательность $y_n \in Y$ можно рассматривать как последовательность элементов пространства \overline{Y} (в силу теоремы 2); условимся говорить, что последовательность $\{y_n\}$ расширенно (o)-сходится в Y, если она (o)-сходится в \overline{Y} . Очевидно (o)-сходимость есть частный случай расширенной (о)-сходимости. Аналогично вводится понятие расширенной (*)-с ходимости. Расширенные сходимости обладают многими свойствами обычных сходимостей.

4. Укажем расширения некоторых конкретных пространств.

Tеорема 4. а) Расширение пространств: \tilde{M} , L^p и S изоморфны пространству S.

в) Расширения пространств m, l^p и з изоморфны пространству s. В заключение заметим, что расширенное пространство может быть определено как пространство, удовлетворяющее следующему условию: если $y_n \in Y$ и inf $(|y_i|, |y_j|) = 0$ при $i \neq j$, то

$$\sup_{n} \{y_n\} < +\infty.$$

Институт математики. Ленинградский государственный университет.

Поступияю 19 VIII 1938.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 L. Kantorovich, Rec. Math., 2 (44), 1.