Доклады Академии Наук СССР 1938. том XX, № 7-8

химия

поч. академик М. А. ИЛЬИНСКИЙ, Л. Г. ГИНДИН и В. А. КАЗАКОВА

к окислению алкил-антраценов, алкил-антрахинонов и их производных

 ВЛИЯНИЕ ВОДЫ НА ОКИСЛЕНИЕ β-МЕТИЛ-АНТРАХИНОНА ХРОМОВЫМ АНГИДРИДОМ В АНТРАХИНОН-β-КАРБОНОВУЮ КИСЛОТУ

В первой статье этого цикла (1) мы описали разработанный нами метод количественного окисления β-метил-антрахинона в антрахинон-β-карбо-

Влияние воды на процесс окисления хромовым ангидридом β -метил-антрахинона в уксусной кислоте.

новую кислоту. Как мы уже там указали, одной из основных предпосылок успешного окисления является безводность уксусной кислоты и ${\rm CrO_3}$. Такое тормозящее влияние воды на окисление боковой цепи, замеченное еще ранее одним из нас (²), представляло значительный интерес, и мы задались целью проследить количественно это влияние на процесс окисления β -метил-антрахинона в антрахинон- β -карбоновую кислоту. Способ нашей работы был такой: мы окисляли β -метил-антрахинон в условиях, описанных в первой статье, с той лишь разницей, что добавляли к 50 мл ледяной уксусной кислоты различное количество воды, не нарушая однако гомогенности среды. Результаты такой серии опытов приведены в таблице и изображены графически на кривой.

Нас смущала точка с 2 мл воды. Однако несколько раз ее проверив и определив положение точки с 1 мл воды, мы убедились в том, что кривая

в этих пределах разбавления водой носит особый характер.

563

Мы видим, что, вариируя количество воды, можно свести выход антрахинон-карбоновой кислоты от максимума к минимуму. При этом интересно отметить, что во всех этих опытах потери вещества, связанные с разруше-Влияние воды на процесс окисления хромовым ангидридом β -метил-антрахинона в уксусной кислоте по способу авторов статьи

Количество до- бавленной воды в мл	Количество полученной антрахинон-карбоновой кислоты			Количество оставшегося β-метил-антрахинона			Итого на β-метил-	Потери в сред-
	вг	в % от теории	среднее в % от теории	ВГ	в %	среднее	антрахи- нон в % в сред- нем	ванные в основ- ном с разру- шением ядра
0	1.086	95.7 94.9	} 95.3	0	0 0	}-0	95.3	4.7
1	0.911 0.920	80.2 81.0	80.6	0.152 0.144	15.2 14.4	} 14.8	95.4	4.6
2 2 2 2	0.757 0.767 0.780 0.751	66.7 67.6 68.7 66.2	67.3	0.283 0.276 0.262 0.298	28.3 27.6 26.2 29.8	28.0	95.3	4.7
4 4	0.658 0.630	58.0 55.5	} 56.7	0.382 0.414	38.2 41.4	39.8	96.5	4.5
6 6	0.411 0.454	36.2	} 38.1	$0.601 \\ 0.562$	60.1 56.2	} 58.1	96.2	3.8
8 8	0.200 0.242	17.6 21.3	} 19.4	0.798 0.765	79.8 76.5	} 78.1	97.5	2.5
12 12	0.044 0.046	3.9	} 4.0	0.9512 0.9324	95.12 93.24	34.2	98.2	1.8
16 16	0.022 0.024	1.9	} 2.0	0.965 0.962	96.5 96.2	96.3	98.3	1.7

Примечание. Во всех опытах была взята навеска β-метил-антрахинона,

нием ядра, не превысили 4.7%, уменьшаясь по мере разбавления уксусной кислоты водой.

Таким образом вода является фактором очень тонкой регуляции процесса окисления хромовым ангидридом β-метил-антрахинона. Тормозящее влияние воды простирается, надо полагать, на многие аналогичные процессы окисления. Исследованием механизма этого явления мы в настоящее время занимаемся.

Выводы. Исследовано тормозящее влияние воды на процесс окисления хромовым ангидридом β-метил-антрахинона в антрахинон-β-карбоновую кислоту.

Институт органической химии. Академия Наук СССР.

Поступило 29 VI 1938.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. А. Ильинский, Л. Г. Гиндин и В. А. Казакова, ДАН, ХХ № 7 (1938). ² М. Ильинский и Е. Покровская, ДАН, XVII, № 3 (1937). 564