ХИМИЯ

почетный академик М. А. ИЛЬИНСКИЙ, Л. Г. ГИНДИН и В. А. КАЗАКОВА

к окислению алкил-антраценов, алкил-антрахинонов и их производных

I. ОКИСЛЕНИЕ β -МЕТИЛ-АНТРАХИНОНА ХРОМОВЫМ АНГИДРИДОМ В АНТРАХИНОН- β -КАРБОНОВУЮ КИСЛОТУ

По окислению в-метил-антрацена и в-метил-антрахинона в антрахинон-3-карбоновую кислоту имеется сравнительно большой экспериментальный материал. Несмотря на это многое, очень существенное в процессах окисления этих соединений осталось совершенно не исследованным. Так обстоит дело с β-метил-антраценом и β-метил-антрахиноном. Окисление же их производных, содержащих в ядре различные заместители, вообще почти не освещено в литературе. Далее, совсем не изучено окисление других алкил-, а также полиалкил-антраценов и полиалкил-антрахинонов, не говоря уже об их дериватах. Вот почему мы и предприняли попытку систематической разработки этой области химии антрацена, оставшейся до сих пор почти нетронутой. Изучая влияние на процессы окисления в первую очередь алкил-антрахинонов, строения алкила, его положения, наличия в ядре других заместителей, а также природы окислителя, растворяющей среды и других факторов, мы надеемся со временем в той или иной степени выяснить те закономерности, которым эти процессы подчиняются, и провести параллель между ними и закономерностями в реакциях окисления боковых цепей в рядах бензола и нафталина. Вопрос этот имеет не только теоретический интерес. Антрахинон-карбоновые кислоты и особенно их производные являются исходным материалом для синтеза кубовых, в частности индантреновых красителей, и углубленное изучение этих соединений, их свойств и способов получения может еще более расширить сферу их применения.

Одной из первых задач, поставленных нами перед собой, было детальное исследование процесса окисления β -метил-антрахинона в антрахинон- β -карбоновую кислоту. Если оставить пока в стороне некоторое различие в поведении β -метил-антрахинона и β -метил-антрацена, о котором у нас будет итти речь особо, то повторяем, что по окислению этих соединений имеется довольно много литературных данных. Еще J. Weiler (¹) и О. Fischer (²), синтезировавшие в 1874 г. β -метил-антрацен, окислили его посредством хромовой кислоты в ледяной CH_3COOH , при кипении, в антрахинон-карбоновую кислоту. Вслед за ними W. Hammerschlag (³) описывает способ окисления β -метил-антрахинона в карбоновую кислоту, который сводится к тому, что раствор β -метил-антрахинона в ледяной CH_3COOH

в течение шести часов кипятится с избытком хромовой кислоты. Однако эти авторы не указывают выхода. Впервые с количественными данными мы встречаемся у Е. Börnstein'a (4) и у С. Liebermann'a c G. Glock'ом (5). Börnstein окисляет β -метил-антрахинон, растворяя 1 часть его в 6 ч. концентрированной $\mathrm{H_2SO_4}$ и 1 ч. воды и внося в эту кашицу 2.5 ч. бихромата калия, после чего смесь нагревается до 110—120°. Выход на антрахи-нон-карбоновую кислоту—до 30% от теории. Liebermann и Glock окисляли в-метил-антрахинон иным путем. К 1 ч. метил-антрахинона в ледяной ${
m CH_3COOH}$ они постепенно прибавляли $1^1/_2$ ч. хромового ангидрида, растворенного в воде, и смесь нагревали в течение 3 часов на водяной бане. Выход кислоты достигал у них 40% от теории. H. Limpricht и O. Wiegand (6) отдают предпочтение способу Börnstein'a. Г. Мейер(7) описывает способ Eichholz'a, который якобы позволяет определить до 80% β-метил-антрацена в сырых антраценах в виде антрахинон-β-карбоновой кислоты. С диссертацией Eichholz'a мы не имели возможности познакомиться. Окисляя β-метилантрацен в условиях, приведенных у Г. Мейера, мы получали кислеты максимум 38% от теории. Самого большего, чего мы могли добиться, окисляя β-метил-антрахинон в условиях Kafuku и Sebe (8), но выделяя при этом антрахинон-карбоновую кислоту в виде ее аммониевой соли (чеге авторы не делали), это 67% от теории. Таким образом все известные нам способы окисления β-метил-антрахинона в антрахинон-карбоновую кислоту давали далеко не количественные результаты.

В связи с этим мы задались целью разработать способ именно количественного превращения β-метил-антрахинона в антрахинон-карбоновую кислоту. К роме практического значения такого способа обладание им облегчило бы нам выяснение влияния самых разнообразных факторов на ход

окисления, на его количественные результаты.

Рамки настоящей статьи не позволяют привести в ней все те эксперименты, которые были проведены нами в поисках оптимальных условий окисления. Результаты их будут описаны в другом месте. Отметим лишь, что эти эксперименты показали решающее влияние на окисление β-метилантрахинона четырех факторов: температуры окисления, продолжительности его, количества СгО3 и, что особенно интересно, воды. Учтя все это, нам удалось найти метод почти количественного окисления β-метил-антрахинона в антрахинон-β-карбоновую кислоту. Метод этот следующий: навеска β -метил-антрахинона (t° плавления 176°), равная одному грамму, растворяется при слабом нагревании в 50 мл ледяной уксусной кислоты. Трехгорлая колба с раствором помещается в водяную баню, нагретую до 70° и в раствор при интенсивном перемешивании его механической мешалкой постепенно вносятся 3.0 г растертого, сухого хромового ангидрида. Процесс окисления при температуре 70° продолжается 8 час. По истечении этого времени содержимое колбы охлаждается и затем разбавляется 400 мл воды. Выпавший осадок отфильтровывается и промывается водой до исчезновения в фильтрате солей хрома. Осадок с фильтра переносится в колбу Эрленмейера, в которой обрабатывается при кипячении разбавленным раствором аммиака до тех пор, пока аммиачный фильтрат после его подкисления не перестанет выделять осадка. Раствор аммониевой соли карбоновой кислоты фильтруется и фильтрат подкисляется соляной кислотой. Выпадающая антрахинон-карбоновая кислота отфильтровывается через взвешенную воронку Шотта, промывается горячей водой и высушивается до постоянного веса. Выход кислоты 94—94.5% от теории. Кислота получается очень чистой, с точкой плавления 291—292°.

Приводим результаты нескольких типичных синтезов (табл. 1).

Тщательно вымораживая уксусную кислоту и хорошо высушивая хромовый ангидрид, нам удалось повысить выход антрахинон-β-карбоновой кислоты до 96% от теории (опыты 5, 6 и 7-й). Дефицит 4—5% кислоты обусловлен неизбежной потерей вещества при выделении антрахинон-карбоновой кислоты, а главное разрушением ее в процессе окисления (табл. 2 и 3).

Таблица 1 Окисление в-метил-антрахинона по способу авторов статьи

	№ опыта									Навеска β-метил-ан- трахинона в г	Выход антрахинон- β-карбоновой кислоть		
							ВГ	в % от теории					
1.					1					1:000	1.069	94.12	
2.						1.				1.000	1.069	94.2	
3.								1		1.000	1.067	94.0	
				1						1.000	1.072	94.4	
5		1		18	N. C.	1	16			1.000	1.077	94.9	
										1.000	1.086	95.7	
BI C		100	NIS.		18	1	35	100	256.19	5.000	5.408	95.0	

Таблица 2 Потеря кислоты, связанная с ее растворимостью в процессе обработки

Навеска антрахи-	Количество обратно	полученной кислоты	- Потеря в %	Потеря средняя в %	
нон-β-карбоновой кислоты	вг	в %	Hotepa B 70		
1.003	0.9984	99.5	0.5		
1,000	0.9936	99.4	0.6	0.5	
1.000	0.9972	99.7	0.3	1	

Таблица 3 Действие хромового ангидрида на антрахинон-β-карбоновую кислоту в условиях окисления β-метил-антрахинона

Навеска антрахи-	Количество оста хинон-β-карбон	вшейся антра-	Потеря в %	Средняя	
нон-β-карбоновой кислоты в г	ВГ	в %	1101сри в 70	потеря в %	
1.000	0.966	96.6	3.4	1	
1.000	0.973	97.3	2.7	3.1	
1.000	0.968	96.8	3.2	1 7	

Вариируя слегка условия, вероятно удастся свести это разрушение к минимуму и таким образом добиться теоретического выхода.

В настоящее время мы заняты разработкой технического метода окисления β-метил-антрахинона в антрахинон-карбоновую кислоту.

⁴ Доклады Акад. Наук СССР, 1938, т. ХХ, № 7-8.

Выводы

Разработан метод окисления β-метил-антрахинона, позволяющий получить антрахинон-β-карбоновую кислоту с выходом до 96 % от теории.

Институт органической химии. Академия Наук СССР. Поступило 29 VI 1938.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ J. Weiler, Ber., 7, 1186 (1874). ² O. Fischer, Ber., 7, 1196 (1874). ² W. Hammerschlag, Ber., 11, 82 (1878). ⁴ E. Börnstein, Ber., 16, 2609 (1883). ⁵ C. Liebermann u. G. Glock, Ber., 17, 888 (1884). ⁶ H. Limpricht u. O. Wiegand, Lieb. Ann., 311, 182 (1900). ⁷ Ганс Мейер, Анализ и определение органических соединений, 218. ⁸ K. Каfuku a. K. Sebe, Bull. Chem. Soc. of Japan, 7, 119 (1932).