в. к. туркин и п. Е. Дюбюк

о строении простых групп

(Представлено академиком О. Ю. Шмидтом 28 VI 1938)

В работе «Квазинормализаторы и мономиальные представления»

В. К. Туркин доказал следующую теорему:

«Пусть $\mathfrak G$ есть группа порядка $p^a n$ [p— нечетное простое число, p(p-1) взаимно просто с n]. Пусть A есть элемент порядка p^k группы $\mathfrak G$. Eсли порядок нормализатора элемента $A^{p^{k-1}}$ относительно группы ${\mathfrak G}$ не делится на p^{2h} , то группа $\mathfrak G$ имеет нормальный делитель, порядок которого делится на n».

Используя методы, примененные В. К. Туркиным в цитированной

работе, можно получить следующее более общее предложение.

Теорема 1. Пусть \$-абелева подгруппа порядка ра некоторой группы $\mathfrak G$ порядка $p^{\beta}n$ (p — нечетное простое число, n не делится на p). Пусть A—элемент подгруппы \mathfrak{P} порядка p^k , причем всякий элемент \mathfrak{P} , сопряженный с A^z равен A^{mz} , где $m \equiv 1 \pmod{p}$. Если порядок нормализатора элемента $A^{p^{k-1}}$ не делится на p^{a+k} , то группа \mathfrak{G} имеет нормальный делитель порядка, делящегося на n. Если в частности $\mathfrak P$ циклическая группа, то $\alpha=k$ и мы приходим

к теореме, усиливающей цитированное предложение В. К. Туркина.

Теорема 1 заключает в себе так же как частный случай следующее хорошо известное предложение Бернсайда (для нечетного p).

Если подгруппа Силова порядка p^{α} группы $\mathfrak G$ порядка $p^{\beta}n$ (n не - делится на р) принадлежит к центру своего нормализатора, то группа

 $\mathfrak G$ имеет нормальный делитель порядка, делящегося на n.

Действительно, если \mathfrak{P} — подгруппа Силова порядка p^{β} , принадлежащая к центру своего нормализатора, то группа В - абелева, а в качестве элемента А может быть взят любой элемент этой группы (так как никакие два элемента группы \$ по предпосылке теоремы Бернсайда не сопряжены между собой). Таким образом условия теоремы 1 в этом случае обязательно выполняются. Далее, теорема 1 заключает в себе (для нечетного р) следующее предложение, доказанное П. Е. Дюбюком.

Пусть \mathfrak{P} — нодгруппа Силова порядка p^a некоторой группы \mathfrak{G} порядка $p^a n$. Пусть далее H-элемент порядка p^l абелевой группы $\mathfrak S$ порядка p^h , входящей в группу \mathfrak{P} . Если никакая степень элемента Hне сопряжена ни с одним элементом группы \mathfrak{H} , нормализатор элемента H совпадает с нормализатором элемента $H^{p^{l-1}}$ и $k+l>\alpha$, то группа

В имеет нормальный делитель порядка, делящегося на n.

Наметим в основных чертах ход доказательства теоремы 1. Пусть

$$\mathfrak{G} = \mathfrak{P} + \mathfrak{P}G_2 + \ldots + \mathfrak{P}G_s, \tag{1}$$

$$G_{\lambda}A = P^{(\lambda)}G_i, \tag{2}$$

$$G_{\lambda}A = P^{(\lambda)}G_{i_{\lambda}},\tag{2}$$

где $P^{(\lambda)}$ — элемент подгруппы \mathfrak{P} . На основании теоремы, доказанной В. К. Туркиным (1), заключаем, что если произведение

$$P^{(1)} P^{(2)} \dots P^{(s)}$$
 (3)

не равно единице, то группа $\mathfrak G$ имеет нормальный делитель порядка, делящегося на n. При вычислении произведения (3) надо принимать во внимание только те элементы $P^{(i)}$, которые соответствуют в смысле равенства (2) вычетам разложения (1), входящим в состав нормализатора элемента $A^{p^{k-1}}$

Введем теперь следующие обозначения. Пусть $\mathfrak A$ — некоторая под-

🏽 группа группы &, содержащая группу \$. Пусть

$$\mathfrak{A} = \mathfrak{P} + \mathfrak{P} A_1 + \ldots + \mathfrak{P} A_l,$$

$$A_{\lambda} A = P^{(\lambda)} A_{i_{\lambda}}.$$

Произведение $P^{(1)}P^{(2)}\dots P^{(l)}$ будем обозначать через $\Pi\left(\mathfrak{A},A\right)$. Далее через $\mathfrak{R}_B^{(\lambda)}$ будем обозначать λ -й квазинормализатор* некоторого элемента B, порядок которого есть степень простого числа p. Наконец через λ_i будем обозначать наибольшее значение числа λ , при котором

$$\mathfrak{R}_{AP}^{(\lambda)}{}_{i}=\mathfrak{R}_{AP}^{(1)}{}_{i}.$$

В принятых обозначениях задача сводится к вычислению произведения

$$\Pi(\mathfrak{R}_{A}^{(1)}{}_{p^{k-1}}, A).$$

Дальнейшие выкладки основываются на следующих двух леммах.

Лемма 1. Пусть v есть отношение порядков групп $\mathfrak{R}^{(\lambda_i)}_{_{A}P^{i+1}}$ и $\mathfrak{M}_{AP^{i}}^{(\lambda_{i})}$. Torda

$$\Pi(\mathfrak{R}_{A^{p_{i+1}}}^{(\lambda_{i})}, A) = [\Pi(\mathfrak{R}_{A^{p_{i}}}^{(\lambda_{i})}, A)]^{v}.$$

 Π римечание. Если $\lambda_i = k-i$, то полагаем, что $\mathfrak{R}_{Ap^{i+1}}^{(\lambda_i)} = \mathfrak{R}_{Ap^{i+1}}^{(k-i-1)}$. Лемма 2. Если $\mathfrak{R}_{Ap^i}^{(\lambda_i)} \neq \mathfrak{R}_{Ap^i}^{(\lambda-1)}$ и $\lambda \leqslant \lambda_{i-1}$, то Π $(\mathfrak{R}_{Ap^i}^{(\lambda-1)}, A) =$ $= [\Pi(\mathfrak{R}_{A}^{(\lambda)}, A)]^{2}, \ e\partial e \ \ e \equiv p \pmod{p^{2}}.$

Легко видеть, что $\Pi(\mathfrak{R}_A^{(k)},\,A)\!=\!A^Z$, где Z есть отношение порядков групп $\mathfrak{R}_A^{(k)}$ и \mathfrak{P} . Пусть отношение порядков групп $\mathfrak{R}_{A^{pk-1}}^{(1)}$ и $\mathfrak{R}_A^{(k)}$ равно $p^{\circ\circ}\varphi$, где φ не делится на p. Применяя надлежащим образом приведенные выше леммы, приходим в конце концов к выводу, что

$$\Pi\left(\mathfrak{N}_{AP^{k-1}}^{(1)}, A\right) = A^{Z\xi},$$

причем

$$\xi \equiv 0 \pmod{p^{\omega}} \equiv 0 \pmod{p^{\omega+1}}.$$

Группа В может быть простой только в том случае, если произведение $\Pi\left(\mathfrak{X}_{A^{pk-1}}^{(1)},\,A\right)$ равно единице, иначе говоря, если отношение порядков групп $\mathfrak{R}^{(1)}_{A^{pk-1}}$ и \mathfrak{P} делится на p^k , а порядок группы $\mathfrak{R}^{(1)}_{A^{pk-1}}$ де-

^{*} Определение квазинормализатора и основные теоремы о квазинормализаторах даны в работе В. К. Туркина (²).

лится на p^{k+a} . Для случая p=2 П. Е. Дюбюк доказал следующую

теорему:

«Пусть $\mathfrak G$ есть группа порядка $2^a n$ (n—нечетное). Пусть A есть элемент порядка 2^k группы $\mathfrak G$. Если элемент $A^{2^{k-2}}$ не сопряжен со своим обратным элементом и порядок нормализатора элемента $A^{2^{k-1}}$ не делится на 2^{2k} , то группа $\mathfrak G$ имеет нормальный делитель порядка, делящегося на n». Оказывается возможным также доказать следующее более общее предложение, которое одновременно является дополнением к теореме 1.

Теорема 2. Пусть \mathfrak{P} — абелева подгруппа порядка $2^{\mathfrak{p}}$ некоторой группы \mathfrak{G} порядка $2^{\mathfrak{p}}$ п (n — нечетное). Пусть A — элемент подгруппы \mathfrak{P} порядка $2^{\mathfrak{k}}$, причем всякий элемент \mathfrak{P} , сопряженный со степенью A, будет снова степенью A. Если элемент $A^{\mathfrak{p}^{k-2}}$ не сопряжен со своим обратным элементом и порядок нормализатора элемента $A^{2^{k-1}}$ не делится на 2^{k+a} , то группа \mathfrak{G} имеет нормальный делитель порядка, деляще-

гося на п.

Институт математики. Московский государственный университет.

Поступило 29 VI 1938.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. К. Туркин, Math. Annal., III, Н. 5. ² В. К. Туркин, Матем. еб., 2, 5 (1937).