Доклады Академии Наук СССР 1938. том XIX, № 9

MATEMATHKA

И. И. ПРИВАЛОВ

о предельных значениях аналитической функции

(Представлено академиком И. М. Виноградовым 7 IV 1938)

В нашей статье $(\dot{}^{1})$ «Приложения понятия гармонической меры к некоторым проблемам теории функций» доказаны следующие две теоремы:

I. Если w=f(z) есть мероморфная функция в единичном круге, отличная от константы, принимающая по всем некасательным путям определенные предельные значения (конечные или бесконечность) на множестве точек E_z окружности |z|=1, mes $E_z>0$, то множество E_w ее предельных значений содержит замкнутое множество положительной гармонической меры.

II. Если w=f(z) есть мероморфная функция в единичном круге, отличная от константы, принимающая по радиальным путям определенные предельные значения (конечные или бесконечность) на множестве точек E_z , расположенном на дуге σ окружности |z|=1, меры большей нуля всюду на σ и второй категории, то множество E_w ее предельных значений содержит замкнутое множество положительной гармонической меры.

Доказательство теоремы II основано на теореме I, а доказательство теоремы I может быть приведено к рассмотрению следующего ее частного случая *.

III. Если $w=w\left(z\right)$ есть голоморфная и ограниченная функция в единичном круге, отличная от константы, стремящаяся по радиусам равномерно на совершенном множестве точек E_z окружности |z|=1, mes $E_z>0$, к некоторым граничным значениям E_w , то множество E_w

есть положительной гармонической меры.

В настоящей статье мы докажем теорему IV, более точную по сравнению с предложением III. С этой целью, считая E_w замкнутым множеством, расположенным внутри круга $|w| < M_1$, обозначим через D открытое множество, являющееся дополнительным к E_w относительно круга $|w| < M_1$. Окружим точки множества E_w конечным числом аналитических контуров Γ_w , попарно не пересекающихся, и обозначим через D_w открытое множество, граница которого состоит из этих контуров Γ_w и окружности $|w| = M_1$.

^{*} Результат III содержится в теореме, доказанной R. Nevanlinna (2).

Пусть $\omega(\Gamma_w, D_w, w)$ есть гармоническая мера системы контуров Γ_w относительно D_w в точке w, т. е. гармоническая функция в D_w , непрерывная в \overline{D}_w , равная единице на контурах Γ_w и равная нулю на окружности $|w|=M_1$. Нижнюю границу относительно всех контуров Γ_w гармонической меры $\omega(\Gamma_w, D_w, w)$ обозначим через $\omega(E_w, D, w)$ и будем называть гармонической мерой множества E_w относительно D в точке $w \subset D$.

IV. Если w=w(z) есть голоморфная функция в единичном круге K, |w(z)| < M, отличная от константы, стремящаяся по радиусам равномерно на совершенном множестве точек E_z окружности |z|=1

mes
$$E_z > 0$$

к некоторым граничным значениям $E_{\rm w}$, то

$$\omega(E_w, D, w_0) \geqslant \omega(E_z, K, z_0), \tag{I}$$

где $D = C(E_w)$ относительно круга $|w| < M_1, M_1 > M, z_0$ — любая точка

круга K, для которой значение $w_0 = w\left(z_0\right)$ лежит вне E_w .

Доказательство. Динейным преобразованием единичного круга |z|<1 самого в себя переведем точку z_0 в нуль; при этом множество точек E_z перейдет в множество точек E_z , меру которого обозначим $2\pi\mu>0$. Очевидно будем иметь:

$$\omega(E_z, K, z_0) = \omega(E'_z, K, 0) = \mu,$$

и доказываемое неравенство (I) заменится следующим:

$$\omega(E_{\mathbf{w}}, D, w_{\mathbf{0}}) \geqslant \mu, \tag{I'}$$

где $w_0 = w(0)$ изображает точку, лежащую вне E_w . Кривые Γ_w мы можем

выбрать так, чтобы точка w_0 лежала внутри D_w .

Рассмотрим совокупность тех точек z единичного круга, в которых значения функции w(z) падают на D_w ; это множество точек содержит как часть область D_z , заключающую внутри себя нулевую точку и ограниченную с одной стороны прообразами Γ_z кривых Γ_w , с другой стороны некоторыми точками окружности |z|=1. Кривые Γ_z аналитические и сгущаются, если они в бесконечном числе, к границе |z|=1.

Положим

$$\omega\left(\Gamma_{w}, D_{w}, \omega\right) = \omega\left(\omega\right).$$

Очевидно функция $\omega\left[w\left(z\right)\right]=u\left(z\right)$ будет гармонической в $D_{z\phi}$ равной единице во всех точках $z,\ |z|<1,$ лежащих на граничных кривых $\Gamma_{z},\ u\left(0\right)=\omega\left(w_{0}\right)$. Мы приложим теперь формулу Грина:

$$\int \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) ds = 0$$

к той области, которая определяется как пересечение D_z' области D_z с кругом |z| < r < 1, полагая $u = \omega \left[\omega \left(z \right) \right]$, $v = \ln \frac{r}{|z|}$, и изолируя сперва z = 0 посредством маленького круга. Заставляя затем радиус этого круга стремиться к нулю, мы получим:

$$\frac{1}{2\pi} \int_{\Gamma_z'}^{r} \frac{\partial \ln \frac{r}{|z|}}{\partial n} ds - \frac{1}{2\pi} \int_{\Gamma_z'}^{r} \ln \frac{r}{|z|} \frac{\partial \omega}{\partial n} ds + \frac{1}{2\pi} \int_{(\varphi)_r}^{r} \omega \left[\omega \left(re^{i\varphi} \right) \right] d\varphi - \omega \left(\omega_0 \right) = 0, \quad (1)$$

так как v исчезает на |z|=r, а u=1 на дугах Γ_z' ; здесь $(\varphi)_r$ обозначают дуги окружности |z|=r и Γ_z' — частичные дуги определенных выше дуг Γ_z , которые (в конечном числе) ограничивают область D_z' .

Легко подсчитать первый интеграл формулы (1); он будет равен $1-m_r$, где положено: $m_r=\frac{1}{2\pi}\int\limits_z d\varphi$. Второй интеграл формулы (1) не больше нуля, потому что на $\Gamma_z^{(\varphi)_r}$

$$\ln \frac{r}{|z|} > 0, \quad \frac{\partial \omega}{\partial n} \leq 0,$$

а третий интеграл не меньше нуля. Заметив это, из формулы (1) получим:

$$\omega\left(\omega_{0}\right) \geqslant 1 - m_{r}.\tag{2}$$

Выберем r столь большим, чтобы точки w ($re^{i\varphi}$) лежали вне D_w , если значения φ соответствуют множеству E_{z}' , что возможно в силу предположения о равномерном стремлении w ($re^{i\varphi}$) к значениям E_w на множестве E_{z}' . Так как, с другой стороны, точка w ($re^{i\varphi}$) для каждого φ из множества $(\varphi)_r$ попадает на D_w , то точки $re^{i\varphi}$, соответствующие этим двум множествам значений φ , образуют два непересекающихся множества; поэтому будет:

$$m_r = \frac{1}{2\pi} \int_{(\varphi)_r} d\varphi \leqslant \frac{1}{2\pi} \int_0^{2\pi} d\varphi - \frac{1}{2\pi} \int_{E_x''}^{\pi} d\varphi = 1 - \mu.$$

Итак, из неравенства (2) будет следовать:

$$\omega(\omega_0) \geqslant \mu$$
.

Это неравенство справедливо для всякой системы контуров Γ_w , а поэтому $\omega\left(E_w,\,D,\,w_0\right)=\inf\,\omega\left(w_0\right)\geqslant\mu,$

что и требовалось доказать.

Поступило 8 IV 1938.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

 1 Матем. cб. (1938); ДАН, XVIII, № 1 (1938). 2 R. Nevanlinna, Eindeutige analytische Funktionen, 198 (1936).