Доклады Академии Наук СССР 1938. Том XIX, № 4

$\Gamma E H E T U K A$

В. И. ПАТРУШЕВ

О НАСЛЕДОВАНИИ БИОХИМИЧЕСКИХ ПРИЗНАКОВ У ЖИВОТ-НЫХ В СВЯЗИ С ИХ РОСТОМ

О НЕКОТОРЫХ ПОКАЗАТЕЛЯХ В СОСТАВЕ КРОВИ ГИБРИДОВ ДВУГОР-БОГО И ОДНОГОРБОГО ВЕРБЛЮДОВ В СВЯЗИ С ГЕТЕРОЗИСОМ

(Представлено академиком Н. И. Вавиловым 28 II 1938)

В в е д е и и е. Кровь как вид ткани, принимающей непосредственное участие во всех основных процессах обмена веществ, дает возможность судить по ряду показателей об интенсивности обмена и связанных с ним продуктивных способностях организма (4). Изучение гематологических различий между гетерозисными и нормальными животными может дать интересный материал по разрабатываемой нами проблеме связи биохимических признаков животных с их ростом и продуктивностью.

Выяснение механизма проявления гетерозиса настоятельно необходимо для вскрытия его сущности и разработки вопроса о закреплении мощ-

ности гибридов в дальнейших поколениях,

Наконец исследование крови верблюдов является полезным и с точки зрения установления ее нормального состава—гемограммы, так как лите-

ратура по этому вопросу крайне бедна (2, 9, 14, 15).

Содержание работы и методика исследования. Нами проведено исследование состава крови 100 животных верблюдзавода № 125 (южный Казахстан): 28 голов наров—гибридов между двугорбыми и одногорбыми верблюдами, 20 голов дромедаров (одногорбых верблюдов) и 52 головы бактрианов (двугорбых верблюдов).

Работа проведена в октябре 1937 г. Животные находились на полупустынных пастбищах и к моменту исследования были хорошей и выше сред-

ней упитанности.

Кровь бралась из яремной вены утром до водопоя и выгона животных

на пастбище.

Изучались объем форменных элементов крови, резистентность эритроцитов, удельный вес крови, содержание общего и восстановленного глютатиона, активность каталазы. Кроме того другим работником эти же животные исследованы на количество эритроцитов, их размеры, содержание гемоглобина и резервную щелочность крови (7).

Указанный комплекс показателей дает довольно полное представление о картине красной крови и потому был выбран нами для суждения об интенсивности обмена веществ у бактрианов, дромедаров и наров $(^{12})$.

Обоснование некоторых из этих показателей дано нами в предыдущих

работах (10,11).

Объем форменных элементов изучался методом отстаивания оксалированной и цитратной крови в мерных пробирнах Сали в течение суток. Проверка этого метода показала, что он дает только относительные значения показателей, так как за сутки у верблюдов не происхо-

дит полного оседания эритроцитов.

Резистентность эритроцитов. По медицинским и ветеринарным данным (12) молодые эритроциты менее устойчивы и гемолизируют в значительно более высоких концентрациях солевых растворов, в то время как старые эритроциты разрушаются только в низких концентратах. Кроме того имеются видовые различия в осмотической стойкости эритроцитов (16), а потому изучение этого показателя представляет определенный интерес. Резистентность эритроцитов определялась макроскопически-в видалевских пробирках.

У дельный вес крови определялся в обычных пикнометрах

с наполнением их кровью до наружного отверстия в пробке (12).

Определение глютатиона проведено по методу Вудварда и Фрай (3).

Каталаза определялась по методу Баха (1).

Описание материа ла. Для характеристики исследованных животных привожу табл 1.

Таблица 1 Динамика живого веса верблюдов

Возрастные группы		Бактриа	ны	Нары			
	n	M	lim	n	M	lim	
При рождении	14 13	42.8 439.0	34— 47 115—175	11	46.3	37— 60	
6 месяцев	13	201.0	129—231	10	166.3 237.9	130—219 165—275	
(2 »	6	214.6 260.5	206—230 230—305	5 5	267.0 326.4	231—307 265—417	
5 »	6	383.3	356-424	5	419	324-495	
935 г. р. (2¹/2 г.)		=	<u> </u>	5	465.6	405—550 589—655	

Исследованные нами дромедары почти не превосходят бактрианов по высоте в холке (173.2 ± 4.4 и 172 ± 1.46), но являются более плоскими и более легкими животными. Обхват груди дромедаров на 7-8% меньше по сравнению с бактрианами (205.4+1.94 и 220.9+2.99). По живому весу взрослые бактрианы в среднем на 45 кг больше дромедаров (621.4±16.7 и 666.2+21.6).

Необходимо отметить также более живой темперамент дромедаров

в сравнении с бактрианами.

Гибриды первой генерации—нары—имеют ясно выраженный гетерозис по основным морфологическим показателям. Нары превосходят обе родительские формы по живому весу, высоте в холке, обхвату груди и т. д. и являются более выносливыми животными.

При сравнении этих и литературных данных $(^2,^5,^8)$ можно прийти к заключению о типичности исследованных нами животных для условий Казахстана.

Результаты исследования крови сведены в табл. 2. В таблице отсутствуют данные по резистентности эритроцитов в виду того, что исследованы единичные возрастные и видовые группы. Не приводятся также данные по общему глютатиону, принципиально не отличающиеся от показателей восстановленного глютатиона. Проанализируем сначала каждый компонент в отдельности.

Объем форменных элементов. Возрастная изменчивость объема форменных элементов изучалась у наров. Из табл. 2 видно, что имеется определенное уменьшение форменных элементов с возрастом.

Не имея данных по возрастной изменчивости разбираемого признака у дромедаров и бактрианов, мы вынуждены сравнивать их между собой, а также с нарами по взрослым животным. Видовые различия по объему форменных элементов по нашим данным отсутствуют, но гибриды имеют повышенное количество форменных элементов в сравнении с родительскими видами.

Резистентность эритроцитов, исследованная в возрастном разрезе бактрианов и наров, дает незначительное, но определенное увеличение с возрастом в обоих случаях; иными словами, у взрослых животных по сравнению с молодняком эритроциты осмотически более устойчивы. Отметим также небольшие различия по резистентности между нарами и родительскими формами. Так, эритроциты 6-месячных наров гемолизируют в пределах 0.31—0.39% раствора NaCl, тогда как эритроциты бактрианов того же возраста разрушаются в более низких концентрациях (0.30—0.37%—более резистентны).

Большая резистентность эритроцитов наров в сравнении с бактрианами отмечена и для $1^1/_2$ -летних и $2^1/_2$ -летних верблюдов. Сравнение взрослых наров и дромедаров показывает, что эритроциты наров более устойчивы к разрушающему действию низких концентраций растворов по срав-

нению с эритроцитами дромедаров.

Содержание восстановленного и общего глютати он а. Возрастные изменения в содержании восстановленного и общего глютатиона в принципе одинаковы и наров и бактрианов (табл. 2). После нодъема содержания глютатиона до $2-2^1/2$ лет начинается некоторое незначительное его падение с возрастом.

На первом месте по содержанию глютатиона стоят нары (26.4%), на втором—дромедары (25.4%), на последнем—бактрианы (24.2%). Аналогичные результаты получены нами и по общему глютатиону. Исключением являются 6-месячные нары, у которых найдено несколько уменьшенное содержание восстановленного глютатиона.

Удельный вес крови. Удельный вес крови бактрианов и на-

ров неуклонно повышается в возрастом.

Из взрослых животных наиболее высокий удельный вес имеют нары (1.0736), за ними идут дромедары (1.0672) и затем бактрианы (1.0664).

Активность каталазы. Активность каталазы в крови вер-

блюдов с возрастом имеет тенденцию понижаться.

У молодых животных отмечены ясные различия между бактрианами и нарами. Активность каталазы в крови бактрианов оказалась значительно выше по сравнению с кровью наров. У взрослых животных эти различия менее заметны, причем активность каталазы в крови дромедаров оказалась наименьшей.

Сравнение показателей каталазы в крови наров и дромедаров подтверждает положение о неполном доминировании низкого индекса каталазы, установленное на ряде видов животных и растений (6 и др.). Биометрическая достоверность различий в показателях крови показана в табл. 3.

Группы животных			6 мес. (1937	r.)	1¹/2 года (1936 г. р.)			
			$M \pm m$	lim	n	$M \pm m$	lim	
гион но- гый	Бантрианы	8	22.8±0.9	18-33	6	21.27±1.2	16—25	
Глютатион восстано- вленный	Дромедары } \$2 Нары	7	21.3±1.3	17—27	4	25.9 ± 2.5	19-31	
Объем фор- менных эле- ментов	Бактрианы) Дромедары } ♀♀		_		_	_		
	Нары	3	82 *	75—90	5	77 <u>±</u> 3.4	7090	
Удельный вес	Бактрианы	8	1.061 ±0.0046	$\frac{1.0474}{1.0865}$	5	1.0625±0.005	$\frac{1.0545}{1.0825}$	
	Дромедары } 22	-	_	_	_	-	Ė	
	Нары	6	1.0638±0.0038	$\frac{4.0541}{1.0743}$	5	1.0634±0.004	1.0541 1.0779	
133	Бактрианы)	6	8.22 <u>+</u> 0.5	6.97—10.03	4	8.07±0.19	7.48-8.33	
Каталаза	Дромедары } \$\$ Нары	4	4.23±0.17	3.74-4.59	5	- 3.74 <u>±</u> 0.1	3.57-4.25	

Таблица з. Таблица вероятностей различий по показателям крови у верблюдов

	6 мес.		1.5 r.		2.5 г.		Варослые	
Показатели	бактр.	P. B %	бактр.	Р. в %	бактр.	P. B %	бактр.	Р.
Глютатион восстан	6>H H>6 H>6 H>6 H>6 G>H	37.3 30.3 49.8	H > 6 H > 6 H > 6 H > 6 H > 6 H > 6	64.8 7.7 95.9	H > 6 H > 6 H > 6 H > 6 H > 6 H > 6 H > 7	66.1 83.0 90.1 86.2 95.3 99.7	H > 6 H > 6 H > 6 H > 6 H > 6 G > H H > 6	72.9 38.3 91.4 99.7 94.3 95.4 57.6

Примечание. б — бактрианы; н — нары; д — дромедары.

	21/2 лет (1935 г. р.)			Варослые							
n	$M \pm m$	lim	n	$M \pm m$	lim	土。	cv%	lim			
10	24.2 ±1.67	22-27	24	24.2	0.75	3.62	14.9	14-30			
		_	18	25.4	0.9	3.33	14.8	17-30			
3	27.74 ± 2.9	22-32	10	26.4	1.84	5.52	20.9	16-35			
			24	72.3	0.87	4.18	5.7	64-80			
_			20	72.45	1.31	5.42	7.5	55—80			
3	80.7	80—82	12	74.0	1.91	6.44	12.3	58-83			
10	1.0640±0.0034	$\frac{1.0532}{1.0832}$	19	1.0664	0.0023	0.00984	0.92	1.0541 1.0866			
_	_	7-	17	1.0672	0.0027	0.01088	1.0	$\frac{1.0526}{1.0885}$			
14	1.0696±0.009	1.0633	10	1.0736	0.0037	0.01114	1.0	1.0580			
11	7.90 <u>±</u> 0.7	3.40-12.68	21	4.85	0.4	1.78	36.8	2.89-8.33			
-	_		18	3.70	0.18	0.76	20.6	1.87-5.10			
4	4.50±0.2	4.25-5.20	13	3.98	0.19	0.68	17.2	3.06-5.40			

Выводы

1. Объем форменных элементов крови гибридов выше в сравнении с исходными формами. Объем форменных элементов крови уменьшается с возрастом.

2. Удельный вес крови гибридов является наибольшим. На втором месте стоят дромедары и на последнем бактрианы. Удельный вес крови с воз-

растом увеличивается.

3. Содержание общего и восстановленного глютатиона крови у гибридов выше по сравнению с исходными формами. На втором месте стоят дромедары и на третьем—бактрианы.

4. Эритроциты бактрианов являются наиболее резистентными. За ними

идут эритроциты наров и затем дромедаров.

5. Содержание каталазы является наиболее высоким в крови бактрианов, а наиболее низким—у дромедаров. Содержание каталазы в крови наров несколько выше по сравнению с родительской формой с минимальным показателем.

6. Гетерозис наров в росте, размерах и выносливости может обусловливаться наряду с другими причинами большим объемом форменных эле-

ментов крови, бо́льшим содержанием глютатиона и более насыщенным составом крови гибридов (что выражается в удельном весе) в сравнении с исходными формами.

Поступило 11 III 1938.

цитированная литература

1 А. Васh u. S. Zubkowa, Biochem. ZS., 125 (1921). ² А. П. Бергрин, В. В. Петропавловский и др., Верблюдоводство (1934). ³ G. Е. Woodwarda. Е. G. Fry, Journ. of Biol. Chem., 97 (1932). ⁴ П. Дюрст, Основы разведения крупного рогатого скота (1936). ⁵ В. Н. Колыков, Журн. научн. и практич. ветер. мед., Х, вып. 3 (1928). ⁶ Н. К. Кольцов, Содержание каталазы в крови позвоночных как наследственный признак. ⁷ Х. Ф. Кушнер, Состав крови верблюдов в связи с их рабочими качествами, ДАН, XVIII, № 9 (1938). ⁸ К. К. Лакоза, Коневодство, № 12 (1931). ⁹ М. А. Малышев, Журн. научн. и практ. ветерин. мед., Х, вып. 3 (1928). ¹⁰ В. И. Патрушев, ДАН, ХІV, № 9 (1937). ¹¹ В. И. Патрушев, там же. ¹² В. Н. Предтеченский и др., Руководство по лабораторным методам исследования (1936). ¹³ К. И. Путилина, Курн. эксперим. биол., V, вып. 1 (1929). ¹⁴ Н. А. Сычев, Ж. эксперим. биол., VI, вып. 1 (1930). ¹⁵ Фролов, Тр. ГИЭВ, V, вып. 2 (1928). ¹⁶ В. Элленбергери А. Шейнерт, Руководство по сравнительной физиологии домашних животных (1933).