Доклады Академии Наук СССР 1938. Том XIX, № 3

MATEMATUKA

А. В. ГРОШЕВ

ТЕОРЕМА О СИСТЕМЕ ЛИНЕЙНЫХ ФОРМ

(Представлено академиком И. М. Виноградовым 28 II 1938)

Предлагаемая теорема является обобщением метрической теоремы А. Я. Хинчина $\binom{1}{2}$ о совместной аппроксимации системы вещественных чисел и теоремы автора $\binom{2}{2}$ о линейной форме.

Пусть имеем r систем вещественных чисел с s членами в каждой:

$$\theta_{i1}, \theta_{i2}, ..., \theta_{is} \quad (i = 1, 2, ..., r).$$
 (1)

Ставится вопрос о метрическом законе совместного приближения к нулю линейных форм:

$$a_1\theta_{i1} + a_2\theta_{i2} + ... + a_s\theta_{is} - b_i$$
 $(i = 1, 2, ..., r)$

при неограниченном возрастании целочисленных переменных a_1, a_2, \dots $a_s, b_1, b_2, \dots, b_r$, а именно: каким условиям должна удовлетворять функция $\phi(t)$ положительного аргумента t, чтобы система неравенств

$$|a_1\theta_{i1} + a_2\theta_{i2} + ... + a_s\theta_{is} - b_i| < \psi(n) \quad (i = 1, 2, ..., r),$$
 (2)

где $n=\max |a_k|$ (k=1,2,...,s), имела почти всюду, т. е. почти во всех точках $(\theta_{11},\theta_{12},...,\theta_{rs})$ пространства rs измерений, бесконечное множество решений в целых a_k , b_i ? Ответом служит Теорема. Пусть $\psi(t)$ —положительная непрерывная функция положительного аргумента t и при $t \to \infty$ $t^s \{ \psi(t) \}^r \to 0$, причем

Теорема. Пусть $\psi(t)$ —положительная непрерывная функция положительного аргумента t и при $t \to \infty$ $t^s \{ \psi(t) \}^r \to 0$, причем $t^{s-1} \{ \psi(t) \}^r$ убывает монотонно. Тогда, для того итобы система неравенства (2) почти для всякой системы чисел (1) имела бесконечное множество решений в целых $a_1, \ldots, a_s, b_1, \ldots, b_r$, необходимо и достаточно, чтобы интеграл

$$\int_{0}^{\infty} t^{s-1} \{ \psi(t) \}^{r} dt$$

расходился.

В доказательстве автор пользовался методами цитированных работ, но способы получения некоторых оценок второй из них упрощены и обобщены на случай любого числа форм. Именно: в статье (2) требовалось оценить число пересечений внутри единичного куба гиперплоскостей семейства

$$nx_1 + a_2x_2 + \dots + a_sx_s - b = 0 (3)$$

с гиперплоскостями семейства

$$n'x_1 + a'_2x_2 + \dots + a'_sx_s - b' = 0,$$
 (4)

где n и n'—фиксированные целые положительные числа, а остальные параметры a_i, a_i', b, b' принимают целые положительные значения, удовлетворяющие условиям

$$a_i \leq n$$
, $a'_i \leq n'$, $(b, n) = 1$, $(b', n') = 1$.

Эту оценку можно получить так. Сделав ортогональное преобразование переменных $x_1, x_2, ..., x_s$, можно привести уравнения (3) и (4) соответственно к виду:

$$\alpha \xi_1 - b = 0$$
 in $\beta \xi_1 + \gamma \xi_2 - b' = 0$.

При $\gamma \neq 0$ необходимым условием пересечения плоскостей (3) и (4) внутри единичного куба будет

$$\xi_1^2 + \xi_2^2 < c, \ c = c \ (s) = \text{const.}$$
 (5)

Выражая ξ_1 и ξ_2 через α , β , γ , а последние через коэффициенты уравнений (3) и (4), из условия (5) получим необходимое условие пересечения:

$$(n'b - nb')^2 < c\gamma^2 (n^2 + a_2^2 + ... + a_s^2),$$

а это условие имеет такой же вид, к какому приводился в (2) случай $\gamma = 0$.

Этот способ оценки числа пересечений легко обобщается на случай любого числа форм.

Поступило 3 III 1938.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

 1 A. Khintchine, Math. ZS., 24, 706 (1926). 2 A. В. Грошев, ИМЕН, Серия матем., № 3, 427 (1937).