Доклады Академии Наук СССР 1939. Том XXV. № 5

ГЕНЕТИКА

д. н. АРЕНКОВА

ТИПЫ ГАМЕТ СТРУКТУРНЫХ АБЕРРАНТОВ CREPIS CAPILLA-RIS WALLR.

(Представлено академиком Н. И. Вавиловым 26 VII 1939)

Имеющиеся в литературе данные о гаметах, образуемых структурными аберрантами, покоятся главным образом на основе положения о нежизнеспособности несбалансированных геномов и учета процента нормальной пыльцы. Так, 50% -я стерильность растений, гетерозиготных по транслокации между двумя негомологичными хромосомами, очень просто объясняется образованием половины гамет с избытком одних и с недостатком других участков хромосом—соответственно простейшей схеме расхождения последних в мейозисе (1,2). Таким же образом объясняется 75% -я стерильность при двух независимых транслокациях (1). Несмотря на хорошее схождение эмпирических данных с теоретическими предпосылками, желательно все же конкретное решение вопроса в виде непосредственного исследования кариотипов половых элементов.

Материалом настоящего исследования послужили рентгенотранслоканты *Crepis capillaris* (4), любезно предоставленные мне проф. Г. А. Левитским, за что приношу ему глубокую благодарность. Исследование велось на стадии первого деления в пыльце ацето-карминовым методом.

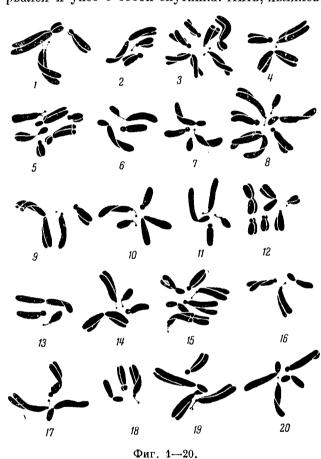
Были исследованы нормальное растение и 6 аберрантов.

I. Нормальный кариотип состоит из 3 пар хромосом, обозначаемых A, C, D. Размеры их (³): A—6.1+1.9 μ, C —3.5+0.8 μ, D —6.5+0.2 μ . У нормальной формы C. capillaris было просмотрено 50 фигур деления.

У нормальной формы C. capillaris было просмотрено 50 фигур деления. Она образует один тип пыльцевых зерен: A, C, D (фиг. 1). Стерильность

пыльцы отсутствует.

II. Гомозиготная транслокация с «2D на 2A». В соматическом наборе— 2 пары одинаково измененных хромосом: 2(A+d), 2(D-d). Исследовано 50 фигурных делений. Обнаружен один тип пыльцевых зерен: A+d, D-d,


С (фиг. 2). Стерильность пыльцы отсутствует.

III. Гетерозиготная инверсия $A-A_i$ (1 (фиг. 3), выражающаяся в изменении соотношения плеч хромосомы A при той же общей ее длине—от нормального 3:1 к 4:1. В соматическом наборе одна измененная хромосома A. Исследовано 44 фигурных деления. Наблюдалось 3 типа пыльцевых зерен: 1) нормальный A, C, D (фиг. 1) (2 -50%; 2) « A_i », C, D

⁽¹ Это изменение, обозначенное первоначально как «перемещение кинетической перетяжки», представляет собой внутреннюю инверсию, включающую перетяжку. (2 За недостатком места невозможно иллюстрировать в отдельности все наблюдавниеся кариотипы пыльцевых зерен каждого из аберрантов; поэтому ссылаемся на ана-

 $(\phi$ иг. 4) — 48%; 3) диплоидный — 2% (фиг. 3). Стерильность пыльны—10%.

IV. «Гетерозиготная» инверсия D (фиг. 5). В соматическом наборе—одна измененная хромосома D. Исследовано 96 фигурных делений. Обнаружено 4 типа пыльцевых зерен: 1) нормальный (фиг. 1) A, C, D—51%; 2) инвертированная хромосома D, A и C (фиг. 6)—44.1%; 3) 4 хромосомы: A, C, D и в виде проксимального участка хромосомы D без спутника (фиг. 7). Наблюдался в 2.1%; дистальный участок хромосомы D оторвался и унес с собой спутника. Нить, являясь, очевидно, более слабым

местом, разрывается (4) и обе части хромосомы D распределяются случайно; соответственный последнему и по ходу мейозиса ожидаемый тип, состоящий из A, C и дистального фрагмента хромосомы D, лишенного кинетической перетяжки, нами не наблюдался; 4) диплоидные пыльцевые зерна-2% (фиг. 5). Стерильность пыльцы—20%.

V. «Гетерозиготная» транслокация с «D на A» (фиг. 8). В соматическом наборе—две измененные хромосомы A+d и D-d. Исследовано 261 фигурное деление. Обнаружено 6 типов пыльцевых зерен: 1) нормальный набор A, C, D (фиг. 1)—44%; 2) сбалансированный A+d, D-d и C (фиг. 2)—27.8%; 3) с дубликацией D, C и A+d (добавка дистального отрезка хромосомы D) (фиг. 9)—20%; соответственный последнему по

ходу мейозиса тип с нехваткой дистального отрезка D не наблюдался; 4) 4 хромосомы: D, C, A+d и D-d. В наборе лишняя хромосома D (фиг. 10); встречался в 1.6%; одновременно с ним возникающий в мейозисе тип пыльцевых зерен, содержащий в наборе лишь хромосомы A и C, не наблюдался; 5) 4 хромосомы A, D, C и D-d; последняя является избыточной в наборе (фиг. 11); встречался в 5.6%; возникающий в мейозисе одновременно с ним тип, состоящий из A+d и C, не наблюдался; 6) пыльцевых зерен с диплоидным набором—0.4% (фиг. 8). Стерильность пыльцы—53%.

логичные наборы, встречающиеся у других аберраций. По тем же соображениям не помещены соматические пластинки аберрантных форм, а даны диплоидные наборы пыльцевых зерен.

VI. «Гетерозиготная» транслокация с «D на A» с изменением в соотношении плеч у $A(A_i)$ (фиг. 12) имеет в соматическом наборе 3 видоизмененных хромосомы: A+d, A_i и D-d. Исследовано 72 фигурных деления. Обнаружено 7 типов пыльцевых зерен. Вполне нормального гаплоидного набора A, C, D у этой формы теоретически не может быть, и действительно он не наблюдался. 1) «Нормальным» типом пыльцевых зерен здесь является набор, состоящий из A_i , D и C (фиг. 4). Он наблюдался в 33.4%. 2) Сбалансированный A+d, D-d и C (фиг. 2)—16.65%. 3) С дубликацией +d, состоящий из A+d, D и C (фиг. 9)—5.55%. 4) Соответствующий последнему типу тип с недостаточным протяжением набора, т. е. A_i , D-d и C наблюдался в 20.8% (фиг. 13). 5) Этот тип содержит в наборе $A_i,\,D,\,C$ и проксимальный отрезок D-d. Последний является избыточным в наборе (фиг. 14). Встречался в 20.8%. Возникающий одновременно в мейозисе кариотип из 2 хромосом C и A+d не наблюдался. 6) 4 хромосомы: A+d, D-d, D и C (фиг. 10). Лишней в наборе является целая хромосома D. Встречался в 1.4%. Возникающий в мейозисе соответственно этому типу тип с недостачей хромосомы D, состоящий из 2 хромосом A_i и C, не наблюдался. 7) Диплоидные пыльцевые зерна—1.4% (фиг. 12). Стерильность пыльцы-75%.

VII. «Гетерозиготная» транслокация с «A на C» (фиг. 15). В соматическом наборе 2 измененные хромосомы A-a и C+a. Исследовано 82 фи-

гурных отделения. Обнаружено 9 типов пыльцевых зерен. 1) нормальный: A, C, D (фиг. 1)—45.1%; 2) сбалансированный: A-a, C+a и D (фиг. 16)—17%; 3) с дубликацией (+a): A, D и C+a (фиг. 17)—3.7%; 4) с нехваткой (-a): A-a, D и C (фиг. 18)—6.1%; 5) из 4 хромосом: A, D, C и A-a; последняя является лишней в наборе (фиг. 19)—5%; 6) из 4 хромосом:

Фиг. 21 и 22.

A, D, A-a и C+a. Лишняя хромосома A (фиг. 20)—1.2%; 7) из 4 хромосом: A, D, C и C+a; последняя избыточная (фиг. 21)—11%. 8) 2 нормальные хромосомы D и C и 2 измененные A-a и C+a (фиг. 22); избыточная хромосома C-8.5%; одновременно с только что описанными 4 «избыточными» наборами должны были возникать в мейозисе соответственно 4 «недостаточных»: 1) D, C+a; 2) D, C; 3) D, A-a; 4) A, D; таковые однако нами не наблюдались. 9) диплоидные пыльцевые зерна—2.4% (фиг. 15).

Стерильность пыльцы—53%.

Пыльца у нормальной формы C. capillaris и у гомозиготной транслокации с «2D на 2A» однородна по своей величине, хорошо и ровно окрашивается. Пыльца же гетерозиготных транслокантов [1) с «D на A», 2) с «D на A» плюс «перемещение кинетической перетяжки» у A (A_i) и 3) с «A на C»] очень разнородна по величине, форме и по количеству пор. Нельзя было установить никакой зависимости между величиной пыльцевых зерен и общим протяжением набора. Так, иногда 4-хромосомные наборы встречались в больших по сравнению с нормальными пыльцевых зернах, которые имели по 4—6 пор (нормальные пыльцевые зерна имеют 3 поры). Наряду с этим диплоидное число и наборы с нехватками найдены в нормальных как по величине, так и по строению пыльцевых зернах. При определении процента стерильности пыльцы учитывались как нормальные лишь хорошо окрашенные пыльцевые зерна с типично развитыми спермиями.

В мейозисе описанных гетерозиготных транслокантов наблюдаются вместо обычных бивалентов группы из четырех хромосом—типов, затронутых транслокацией (5). В подобных группах могут осуществляться 2 типа расхождения хромосом: чередующийся и примыкающий. В результате первого образуются пыльцевые зерна с нормальными и сбалан-

сированными наборами из 3 хромосом. В результате примыкающего расхождения возникают пыльцевые зерна с дубликациями и нехватками. Образование 4-хромосомных типов пыльцевых зерен происходит, повидимому, за счет «нерасхождения» хромосом, осуществлению которого благоприятствует образование в мейозисе группы из 4 хромосом. В пользу этого говорит то, что «нерасхождение» у нормальной особи и гомозиготного транслоканта с «2 D на 2 A» никогда не наблюдалось. Числа встречаемости каждого из типов пыльцевых зерен показывают, что частота появления некоторых типов во многих случаях не соответствует ожидаемому: например, у аберранта VII нормальные и сбалансированные пыльцевые зерна должны образовываться в равных количествах, однако первые наблюдались в 45.1% случаев, а вторые только в 17%. Аналогичным примером является наличность пыльцевых зерен с 4-хромосомными наборами и полное отсутствие 2-хромосомных пыльцевых зерен. Такого рода явления объясняются, очевидно, пониженной жизнеспособностью уклоняющихся от нормы и особенно «недостаточных» наборов, вследствие чего соответствующие пыльцевые зерна или погибают на самой ранней стадии развития или задерживаются в своем первом делении.

Во всяком случае, большинство из обнаруженных нами кариотипов могут пойти в оплодотворение. Помимо нормальных и сбалансированных, это несомненно также и для 4-хромосомных гамет с лишней цельной хромосомой (фиг. 40, 20, 40, 20, ведущих к образованию полных трисомиков, поскольку таковые были получены для 4, 40,

Сравнивая наши данные, полученные в результате исследования С. capillaris, с данными других исследователей(1, 2), приходится констатировать их резкое расхождение. Указанные авторы считали: 1) что почти во всех исследованных случаях гетерозиготных транслокантов образуется 4 типа гамет при наличии в диакинезе группы из 4 хромосом; 2) что образование всех типов половых клеток осуществляется в равных количествах; 3) что число хромосом гаплоидного набора в пыльцевых зернах во всех случаях остается нормальным и 4) что во всех случаях к фертильным гаметам относятся нормальные и сбалансированные, гаметы же с нехваткой и дубликацией, как правило, являются абортивными. Из наших данных следует, что у гетерозиготных транслокантов Crepis capillaris разнообразие наблюдаемых непосредственно кариотипов пыльцевых зерен значительно превышает выводившееся до сих пор теоретически и не может быть увязано с процентом стерильности пыльцы определенных аберраций.

Лаборатория цитологии Всесоюзного института растениеводства Ленинград—г.Пушкин Поступило 29 VII 1939

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

С. В u r n h a m, Proceed. Nat. Acad. Sci., 16, № 4 (1930). ² В. М с С i n-tock, Proceed. Nat. Acad. Sci., 16, 791—796 (1930). ³ Г. А. Левитский и А Г. А раратян, Тр. прикл. бот., ген. и сел., 27, № 1 (1931). ⁴ Г. А. Левитский и ский, Е. М. Шенелева, Н. Н. Титова, Соц. растен., 11 (1934). ⁵ Д. Ф. Петров, Тр. прикл. бот., ген. и сел., сер. П. № 8 (1935). ⁶ М. Nawashin. Univ. of Cal. Publ. in Agric. Sci., 2, № 14 (1929).