Доклады Академии Наук СССР 1938. том хіх, № 4

ФИЗИКА

В. И. ЧЕРНЯЕВ

ВЛИЯНИЕ ИНЕРТНЫХ ГАЗОВ НА ИНТЕНСИВНОСТИ ЛИНИЙ БАЛЬМЕРОВСКИХ СЕРИЙ ВОДОРОДА И ДЕЙТЕРИЯ

(Представлено академиком С. И. Вавиловым 12 III 1938)

Известно, что линии бальмеровской серии могут быть прослежены до очень высоких членов, если производить разряд во влажном водороде⁽¹⁾ или в благородных газах (He, Ne, Ar), когда водород присутствует лишь в виде следов (²).

Процессы, происходящие при этом в разрядной трубке, еще далеко не ясны. Поэтому представляет интерес сравнить между собой испускания легкого и тяжелого (дейтерия) изотопов водорода в примеси к посторонним газам. Здесь, во-первых, можно получить дополнительные сведения о поведении самих изотопов и, во-вторых, ближе подойти к правильному толкованию элементарных процессов в разряде. В настоящей работе такая попытка была предпринята.

Для того, чтобы условия разряда для обоих изотопов были тождественны, изучался спектр их смеси. Капля 61.6% тяжелой воды была введена в сосуд, из которого пары воды могли порциями впускаться в разрядную трубку. Трубка питалась трансформатором. Разность потенциалов между электродами составляла 1 700—1 800 V. Чтобы исключить загрязнение разряда ртутными парами, между насосом и трубкой была поставлена ловушка с жидким воздухом. По той же причине давление в трубке не измерялось, так как пары ртути из манометра Мак Леода могли попасть в разряд, тем более что влияние давления на интенсивность линий водорода исследовалось уже неоднократно (³). Для уменьшения самообращения линий спектр снимался поперек трубки.

В качестве спектрального прибора использовался спектрограф с плоской решеткой. Спектры фотографировались через ступенчатый фильтр, и на те же пластинки наносились марки интенсивности от сплошного стандартного источника света.

Во-первых, снимался спектр разряда в парах воды без примесей постороннего газа. Затем водород совершенно откачивался, и в трубку впускалась порция какого-либо благородного газа (He, Ne, Ar). При этом сначала ярко вспыхивал спектр благородного газа, но по мере разогревания трубки начинали выступать линии водорода, выделившегося со стенок и электродов. Через 10—20 мин. горения, когда свечение водорода становилось очень ярким, а свечение постороннего газа сильно ослабевало, производилась съемка.

Измерения отношения интенсивностей линий дейтерия к линиям водорода дали следующие результаты (табл. 1-4).

Таблица 1

	1. N. N.		1 /	1	r				
Пластинка Сила тока, mA	3a,b*		4 a, b		5 a	., b	6 b	7 b	8 a, b
	160	235	160	250	160	250	250	250	250
$\frac{D_{\alpha}}{H_{\alpha}}$	1.17	1.15	1.23	1.22	1.25	1?	-	-	1.38
$\frac{\mathrm{D}_{\beta}}{\mathrm{H}_{\beta}}$	1.14	1.16	1.24	1.20	1.33	1.26	1.62	1.36	1.37
$\frac{D_{\gamma}}{H_{\gamma}}$	1.16	1.15	1.26	1.20	1.21	1.32	1.62	1.33	
$\frac{D_{\delta}}{H_{\delta}}$	-	—	-	-	-	-	-	1.37	-

Разряд в парах воды

Таблица 2

Разряд в Не с присутствием следов водорода

Пластинка	3a, b		4 a, b		5a, b		6 b	7 b	8a, b
Сила тока, mA	155	240	160	250	160	250	250	250	250
$\frac{D_a}{H_a}$	1.59	1.38	1.48	1.46	1.58	1.50	-	-	1.33
$\frac{D_{\beta}}{H_{\beta}}$	1.67	1.40	1.54	1.53	1.70	1.69	1.78	1.41	1.55
$\frac{D_{\gamma}}{H_{\gamma}}$	1.80	1.47	1.68	1.67	1.91	1.88	1.91	1.64	1.81
$\frac{D_{\delta}}{H_{\delta}}$	-	-	-	—	-	—	<u> </u>	1.91	-

Из таблиц видно, что отношение интенсивностей линий $\frac{D}{H}$ вдоль серии для данной экспозиции при разряде в парах воды (табл. 1) в пределах ошибок постоянно, а при разряде в Не (табл. 2) при переходе к высшим членам серии это отношение растет. Фостер и Снелл (⁴), изучая явление Штарка для смеси водорода и дейтерия в присутствии гелия, тоже заметили уменьшение отношения интенсивности линии водорода к линии дейтерия в паре H_{γ} , D_{γ} по сравнению с отношением в паре H_{β} , D_{β} . Из табл. 2 заметно также и общее возрастание интенсивности линий D (по отношению к Н при разряде в Не. При разряде в Ne (табл. 3) отношение $\frac{D}{H}$, может быть, уменьшается

При разряде в Ne (табл. 3) отношение $\frac{2}{H}$, может быть, уменьшается при переходе от α к β , хотя возможно, что это обусловлено ошибками измерений. В Ar (табл. 4) это отношение можно считать постоянным вдоль серии.

* Здесь, как и в дальнейшем, пластинка, помеченная a, снята во втором порядке решетки (H_{a} , D_{a}), а b — в первом (H_{β} , D_{β} ... H_{δ} , D_{δ}).

Пластинка	3 a, b		4 a, b		5 a, b		6 b	7 b	8 a, b
Сила тока, mA	160	250	160	217	160	260	260	260	260
$\frac{D_{a}}{H_{a}}$	1.45	1.14	1.23	1.15	1.42	1.53	-	-	1.45
$\frac{D_{\beta}}{H_{\beta}}$	1.28	1.11	1.21	0.95	1.41	1.41	1.58	1.51	1.46
$\frac{D_{\gamma}}{H_{\gamma}}$	1.20	1.15	1.15	0.93	_	-	1.54	1.54	-
$\frac{D_{\delta}}{H_{2}}$	_	-	-	-	-	-		1.58	-

Таблица 4

Таблица 3

Пластинка	3 a, b		4 a, b		5 a	, b	6 b	7 b	8a, b
Сила тока, mA	160	260	160	260	160	260	260	260	260
$\frac{D_a}{H_a}$	1.35	1.26	1.39	1.22	1.22	1?	-	-	1.39
$\frac{D_{\beta}}{H_{\beta}}$	1.32	1.23	1.32	1.26	1.26	1.22	1.62	1.41	1.43
$\frac{D_{\gamma}}{H_{\gamma}}$	1.26	1.12	-	1.20	1.26	1.16	1.61	1.42	-

Разряд в Ar с присутствием следов водорода

Наблюдающееся в ряде случаев относительное уменьшение интенсивности линий D по сравнению с H при увеличении силы тока (на одной пластинке) может быть не связано именно с силой тока, а обусловлено изменением условий разряда с течением времени, так как всегда раньше делался снимок с меньшей силой тока, а затем — с той же порцией газа — с большей.

Относительные интенсивности линий одного изотопа по серии подвержены заметным колебаниям вследствие зависимости от давления (³), которое оценивалось только по виду разряда и в среднем составляло около 1 мм, а также вследствие небольшой точности гетерохромной фотометрии.

Если усреднить наблюдения по давлениям и ошибкам измерений, то получается следующая таблица (табл. 5).

Следует отметить, что если во всех случаях с повышением силы тока отношения интенсивностей табл. 5 растут, то для $\frac{H_a}{H_\beta}$ и $\frac{D_a}{D_\beta}$ — при разряде в парах воды — они уменьшаются, что вероятно объясняется самообращением линии H_a (D_a). Условия разряда, с которыми работал Джексон (³), близки к условиям настоящей работы и относительные

Таблица 5

Наполнение	H	-20	I	Ie	Ne			Ar	
Сила тока, тА	165	255	160	260	162	217	265	165	265
$\frac{\mathrm{H}_{a}}{\mathrm{H}_{\beta}}$	8.46	8.08	10.5	11.3	8.99	11.1 .	13.6	9.61	12.16
$\frac{D_{\alpha}}{D_{\beta}}$	8.17	7.57	9.90	10.3	9.09	13.4	14.2	9.69	11.0
$\frac{H_{\beta}}{H_{\gamma}}$	4.10	5.67	4.59	4.74	4.86	4.96	5.27	6.46	6.66
$\frac{D_{\beta}}{D_{\gamma}}$	4.30	5.57	4.14	4.26	5.11	5.09	5.29	6.47	6.92

интенсивности, полученные здесь, следует считать хорошо согласующимися с наблюденными им, так как неучитываемые условия разряда могут заметно повлиять на интенсивности.

Постепенное относительное усиление линий D в He при переходе к высоким членам наблюдается вероятно и дальше, чем были произведены количественные измерения. Снимки, сделанные на вогнутой решетке без стеклянной оптики, показали, что для высоких членов серии (получены снимки до 11-го члена) усиление линий D по отношению к H гораздо заметнее, чем для низких.

Спектр рекомбинации ионов D+ и H+ с электронами должен иметь относительно более интенсивные линии, исходящие с высоких уровней, чем спектр электронного возбуждения. Поэтому мне кажется вероятным, что при ударах второго рода молекул D_2 с возбужденными атомами Не образуются атомные ионы D+ и в большем количестве, чем ионы Н+ при таком же процессе. В трубке должны присутствовать молекулы H_2 , HD и D_2 . По всей видимости процессы $He^* + HD \rightarrow He + H^+ + D$ и He*+HD -> He+H+D+ приблизительно равновероятны. Остается различие вероятностей процессов $He^* + H_2 \rightarrow He + H + H^+$ и $He^* + D_2 \rightarrow$ -> He+D+D+. Если снять спектр в начале горения трубки и затем примерно через 1/2 часа горения, то при второй экспозиции линии D несколько ослабевают. Это указывает на возможность более сильного эффекта «вычистки» («clean-up-эффект») для дейтерия (адсорбция свободных ионов и атомов стенками). В дальнейшем возможно наступает равновесие между концентрацией D и H в газообразной фазе и в адсорбированном слое и при продолжительном горении трубки интенсивность линий Н и D примерно равномерно ослабевает, а интенсивность линий Не усиливается. Последнее имеет место и при разряде в Ne и Ar.

Первый метастабильный потенциал He ($V_{\text{He}} = 19.77 \text{ V}$) попадает в область континуума молекулярного иона H_2^+ , т. е. за предел схождения вибрационных уровней основного состояния $1s^2 \sum_g$ иона H_2^+ , лежащего примерно на 18V выше основного состояния нейтральной молекулы. Если вычислить эту же границу для D_2^+ , то она лежит на [0.07-0.08 V] выше, чем для H_2^+ . Несмотря на то, что на расстоянии порядка 1.7 V от границы континуум D_2^+ (или H_2^+) вряд ли достаточно интенсивен, процесс $\text{He}^* + D_2 \rightarrow \text{He} + D + \text{D}^+$ вполне вероятен, так как здесь осво-

бождается свободный электрон, могущий принять на себя избыток энергии (⁵). Однако малое отличие расстояний от предела для D_2^+ и H_2^+ не может повести к преимущественной ионизации с диссоциацией для D_2 (⁶).

Молекула H_2 , образованная сближением двух атомов H, находящихся каждый на двухквантовом уровне, по расчетам должна иметь потенциальную кривую, обладающую минимумом при расстояниях 2—2.5 Å, глубиной 0.5-1V. Так как асимптотическое значение ееренергии 20.3 V, то этот минимум лежит очень близко к значению V_{He} . Если при этом соответствующий минимум для D_2 ближе к значению V_{He} , чем для H_2 , то вследствие возможности изменения расстояния между ндрами в процессе удара (⁷) в результате столкновения может получиться молекула D_2 с двумя возбужденными электронами. Вследствие большого расстояния между ее ядрами, даже при небольшой вибрационной энергии, полученной ею, она может перейти на неустойчивую потенциальную кривую иона $D_2^+ (2p^2 \sum u)$ (аутопонизация) и диссоциировать на $D + D^+$. Одновременная двухкратная ионизация молекулы H_2 электронным ударом по крайней мере наблюдалась (⁸).

Как указал Райс (*), процесс передачи энергии при столкновении двух систем A^* и B (A^* — возбужденная), приводящий к продуктам Aи B^* , следует рассматривать как процесс энергетического перехода в «квази-молекуле» $A^* + B$, приводящий к «квази-молекуле» $A + B^*$. Если потенциальные кривые обеих «квази-молекул» пересекаются, то процесс возможен. При сближении двух систем потенциальные кривые о т д е л ь н ы х систем подвергаются возмущению (так что здесь возможно и изменение расстояния ядер D_2 или H_2). Чем ближе значения энергий сталкивающихся систем на бесконечности (резонанс), тем вероятнее передача энергии. Передача возможна также и при сближении потенииальных коивых квази-молекул $A^* + B$ и $A + B^*$ (¹⁰).

циальных кривых квази-молекул $A^* + B$ и $A + B^*$ (¹⁰). Процесс $\text{He}^* + D_2 \rightarrow \text{He} + D^+ + D + el$ может обладать также большей вероятностью, чем соответственный процесс для H_2 , оттого, что статистический вес соударения пропорционален $m^{*/2}$, где m — приведенная масса сталкивающихся частиц. Однако от m зависит и матричный элемент перехода энергии при соударениях, и в случае одиночных пересекающихся уровней в результате вероятность уменьшается с увеличением m (¹⁰). Но в нашем случае вследствие большого количества возможных пересечений уровней это может быть и не так. К сожалению соответственных теоретических расчетов пока не имеется.

Если уменьшение $\frac{D_{\beta}}{H_{\beta}}$ по сравнению с $\frac{D_{\alpha}}{H_{\alpha}}$ при разряде в Ne (табл. 3)

реально, то его можно объяснить реакцией, которая по Бейтлеру и Эйзеншиммелю (7) при разряде в Ne с примесью H_2 приводит к относительному усилению линии H_a :

$$(2^{3}P_{o})$$
 Ne + H₂ = $(4^{1}S_{o})$ Ne + H + $(3^{2}P)$ H + 0.13 V.

Здесь метастабильный атом Ne (16.6 V) приводит в одном акте к распаду H_2 (энергия диссоциации 4.44 V) и возбуждению одного из атомов на трехквантовый уровень (12.03 V). Но такой процесс для удара с D_2 вероятнее, так как энергия диссоциации D_2 примерно на 0.07 V выше, чем для H_2 , и энергия возбуждения атома D тоже примерно на 0.003 V

выше. Поэтому при ударе с D_2 остается излишек всего 0.06 - 0.05 V, т. е. резонанс лучше, а, значит, процесс вероятнее.

Лаборатория молекулярной и атомной спектроскопии. Государственный оптический институт. Ленинград.

Поступило 17 III 1938.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1

¹ R. W. Wood, Proc. Roy. Soc. London (A), **97**, 455 (1920). ² T. R. Merton a. J. W. Nicholson, Phil. Trans., **217**, 237 (1918); Proc. Roy Soc. Lond. (A.), **96**, 412 (1920); T. Takaminea. T. Suga, Sci. Pap. Inst. Phys. Chem. Res. Tokyo, 14, 117, N 265 (1930); E. Lau u. O. Reichenheim, ZS. f. Phys., **73**, 31 (1932). ³ L. S. Ornstein u. H. Lindemann, ZS. f. Phys., **63**, 8 (1930); W. W. Jackson, Phil. Mag., **22** (VII), 633 (1936). ⁴ J. S. Foster a. H. Snell, Proc. Roy. Soc. Lond. (A), **162**, 349 (1937). ⁵ R. Frerichs, Ann. Phys., **85**, 362 (1928); J. Takahashi, Ann. Phys., **3**, 27; 49 (1929). ⁶ F. M. Penning, Physica, **12**, 65 (1932). ⁷ H. Beutler u. W. Eisenschimmel, ZS. f. Elektroch., **37**, 582 (1931). ⁸ W. Bleakney, Phys. Rev., **35**, 1180 (1930); W. W. Lozier, Phys. Rev., **36**, 1285 (1930). ⁹ O. K. Rice, Phys. Rev., **37**, 1187; 1551 (1931). ¹⁰ L. Landau, Phys. ZS. Sow., **1**, 88; **2**, 46 (1932).