Доклады Академии Наук СССР 1938. том XIX, № 1—2

ФИЗИОЛОГИЯ РАСТЕНИЙ

м. х. чайлахян и л. п. жданова

РОЛЬ ГОРМОНОВ РОСТА В ФОРМООБРАЗОВАТЕЛЬНЫХ ПРО-ЦЕССАХ.

1. ФОТОПЕРИОДИЗМ И ОБРАЗОВАНИЕ РОСТОВЫХ ГОРМОНОВ

(Представлено академиком А. А. Рихтером 3 III 1938)

Изучение гормонов роста в растительных организмах за последнее время привело к фактам, показывающим их большую роль в формообразовательных процессах. Последнее десятилетие явилось поворотным этаном, когда от работ над классическим объектом—колеоптилями овса и других злаков—перешли к разнообразным растениям различного возраста и в качестве источника ростовых гормонов стали брать не верхушки колеоптилей, а синтетические препараты гормонов. Приготовление последних стало возможным после работ Кёгля и его сотрудников (5,6,7), выделивших гормоны—ауксины и установивших их химическое строение.

Впервые в опытах Лайбаха и Фишниха (8,9), Циммермана и Вилькоксона (11) было установлено большое значение ростовых гормонов-ауксинов в образовании каллюса и корней. При снабжении отдельных частей растения ауксинами в виде пасты или через инъекцию на этих частях появлялись корни. Погружение черенков кустарниковых и древесных растений в растворы гетероауксина также вызывало быстрое образование корней в опытах Купера (1), Гитчкука и Циммермана (4).

Влияние гормонов роста на формирование листьев было выявлено в опытах Лайбаха и Маи (10), где гетероауксин, искусственно введенный в растения Solanum Lycopersicum и Coleus thyrsoideus путем смазывания еще нераскрытых пазушных почек, вызывал упрощение пластинки листа, срастание листьев, замыкание точки роста в тканях листового черенка

и образование асцидий (воронкообразных листьев).

Формирование побегов также в значительной мере зависит от наличия того или иного количества гормонов роста. В опытах Досталя и Хошека(²) с Circaea intermedia верхушечные отрезки растений, готовые к цветению, при смазывании их гетероауксином давали вместо обычных цветочных

побегов стеблевые побеги с задержанным цветением.

Интересные факты представил Густавсон (3) в своей работе по индуцированию развития плодов при помощи ростовых веществ. Автор удалял из цветочных бутонов тычинки и срезывал столбик с рыльцем, а срезанную поверхность столбика смазывал ланолиновой пастой с гетероауксином или химически близкими ему веществами, как индол-пропионовая, индол-бутириновая и фенил-уксусная кислоты. Неоплодотворенная завязь под влиянием этих веществ развивалась в плод, не содержащий

семян. Такие зрелые партенокарпические плоды были получены у томатов, петунии, перца и $Salpiglossus\ variabilis$. У других растений эти вещества вызывали увеличение завязи в различной мере, но зрелых плодов

не получалось.

Все приведенные здесь факты показывают, как велико значение ростовых гормонов-ауксинов в формообразовательных процессах. Они влияют на образование каллюса и корней, на формирование листьев и строение побегов, на развитие бессемянных плодов; иначе говоря, влияние гормонов роста распространяется на вегетативные органы и на перикарпий плодов. Значение гормонов роста в переходе растений от вегетативного роста к половому развитию, от образования корней, листьев и стеблей к закладке цветочных почек и образованию цветов в указанных работах не затрагивалось. Однако этот вопрос и его решение имеют существенное значение для полной характеристики роли ауксинов в жизни растений.

Для решения этого вопроса нами была предпринята работа по изучению изменения гормонов роста при резких переходах растений от вегетативного роста к репродуктивному развитию, вызываемых факторами внешней среды, а также по искусственному введению синтетического препарата ростового гормона (гетероауксина) в растения. Вся работа

была проведена в три последовательных этапа:

1) Изменения ростовых гормонов при фотопериодизме растений—реакции их на изменение продолжительности дневного освещения.

2) Изменения ростовых гормонов при яровизации растений.

3) Влияние гетероауксина на рост и развитие растений при предпосевной обработке семян гетероауксином.

Ниже вкратце излагаются результаты первой части работы, проведен-

ной в 1936 г.

Задача опытов заключалась в том, чтобы получить растения одного возраста, но резко отличные по степени своего полового созревания, и проследить за изменениями в концентрации ростовых гормонов и в тех и в других. Для этого были взяты следующие растения: просо (Panicum miciaceum), конопля (Cannabis sativa), подсолнечник (Helianthus annuus), перилла (Perilla nankinensis), хризантема (Chrysanthemum indicum), белая горчица (Sinapis alba) и синий люпин (Lupinus angustifolius). Растения выращивались летом 1936 г. в вегетационном домике и были разбиты на две группы: растения I группы были на длинном (полном) дне и растения II группы на искусственно укороченном 10-часовом дне. Просо, конопля, перилла, хризантема и подсолнечник сорт Кубанский 631 на коротком дне быстро проходили последовательные фазы развития: бутонизацию, цветение и образование семян. На длинном (полном) дне их развитие проходило значительно медленнее, перилла же вовсе не образовала ни бутонов, ни цветов. Противоположную картину показали растения горчицы и люпина: на длинном дне они быстро зацвели и начали плодоносить, на коротком дне горчица бутоңизировала и цвела значительно позднее, а люпин вовсе не зацвел. Только лишь на одну форму подсолнечника—сорт Саратовский ранний изменение длины дня не оказало влияния: бутонизация и цветение у этого растения наступили одновременно и на длинном и на коротком. дне.

Таким образом во взятом наборе растений резко выявились типичные формы растений длинного дня, растений короткого дня и растений, нейтральных к длине дня.

Влияние длины дня сказалось не только на развитии растений, но и на их росте. Независимо от характера фотопериодической реакции все растения росли быстрее на длинном (полном) дне. При этом у проса, конопли,

хризантемы и подсолнечника (сорт Кубанский 631) после цветения растений на коротком дне разница в высоте растений еще более усугубилась, тогда как у горчицы и люпина после цветения их на длинном дне она уменьшилась. Таким образом влияние длины дня на ростовых процессах ска-

залось вполне определенно и иначе, чем на процессах развития.

Определения изменений в концентрации ростовых гормонов в этих растениях должны были показать, в каком направлении проходят эти изменения, соответствуют ли они изменениям в темпах развития или в темпах роста растений. Определение ростовых гормонов производилось по методике, в основу которой взят принцип Вента: на колеоптили овса с одной стороны насаживались агаровые кубики, с находящимся в них гормоном роста. Колеоптили, выращенные в полной темноте, отделялись от семени, декапитировались на 2 мм, освобождались от листка, сидящего внутри их, и насаживались на деревянные шпильки, укрепленные на деревянных пластинках. С одной стороны каждого колеоптиля на $1^{1}/_{2}$ —3 часа прикладывался агаровый кубик с ростовым гормоном сейчас же ниже верхнего среза так, что ростовой гормон из агарового кубика проникал в колеоптиль через неповрежденную поверхность. Пластинки с колеоптилями помещались во влажные камеры, на дно которых было налито столько воды, чтобы уровень ее был несколько выше основания колеоптилей.

В агаровые пластинки ростовой гормон переводился так: верхушечные отрезки стеблей растений подвешивались во влажной камере и к нижнему срезу их прикладывались на 3 часа агаровые пластинки. Затем эти пластинки разрезались на 6 равных частей, в которых и определялось содер-

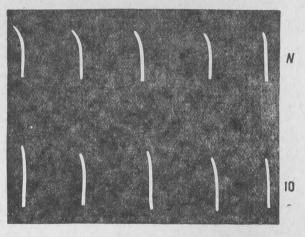
жание ростового гормона по изгибу колеоптилей.

Взяты были верхушки растений, так как предварительные опыты показали, что наибольшее количество ростовых гормонов имеется именно в верхушках (табл. 1).

Таблица 1 Распределение ростового гормона по стеблю растений

Растение	Дата определе- ния	В какой части стебля взят отрезок	Изгиб в градусах	
Люпин	8 VII	Верхушка Середина Основание	$\begin{array}{r} 33 \pm 1.27 \\ 21 \pm 2.31 \\ 12 \pm 1.90 \end{array}$	
Перилла	20 VI	Верхушка Середина Основание	12±1.10 9±0.69 7±1.05	
Подсолнечник	16 VI	Середина Основание	19±1.74 8±0.90	

Во взрослых листьях не было обнаружено ростового гормона, так как колеоптили овса под влиянием кубиков из-под срезанных черешков с листо-


выми пластинками изгибов не давали.

Определения ростовых гормонов в верхушках растений показали, что у всех взятых в опыт растений концентрация гормонов выше на длинном дне. Часть данных по определениям приводится в табл. 2, где дается количество ростового гормона в градусах изгибов колеоптилей для горчицы, люпина, конопли, хризантемы и подсолнечника.

Эта таблица показывает, что изменения в концентрации ростовых гормонов подчиняются тем же закономерностям, что и рост растений, и не связаны с переходом растений от вегетативного роста к репродуктивному развитию. Действительно, если к примеру сопоставить состояние растений хризантемы на длинном и коротком дне и содержание ростовых гормонов в них (фиг. 1, 2), то станет ясным, что увеличение концентрации

Фиг. 1.—Рост и развитие хризантемы на длинном (N) и коротком (10) дне. Сорт Мария_Белая (фото 29 IX 1936 г.).

Фиг. 2. — Изгибы колеоптилей овса под влиянием одностороннего снабжения их ростовым гормоном хризантемы: N—с длинного (полного) дня, 10—с короткого 10-часового дня (фото 27 VIII 1936).

гормонов роста связано с большим вегетативным ростом и образованием вегетативных органов, а не с переходом растений к цветению и образованием цветов.

Образование ростовых гормонов у всех растений независимо от их фотопериодической реак-

Количество ростового гормона в растениях при различней продолжительности дневного освещения

Растение	Дата опреде- ления	Продолжи- тельность дневного освещения	Угол изгиба		
			в градусах	в %	Фаза развития
	I. I	Растения	длинного	о дня	
Горчица белая	2 VII	N 10	$ \begin{array}{c c} 16 \pm 2.49 \\ 5 \pm 0.70 \end{array} $	100 31	Цветение Вегетативный рост
Люпин	9 VII	N 10	23±1.60 14±0.0	100	Бутонизация Вегетативный рост
	II.	Растения	коротко	го дня	
Конопля	13 VIII	N	20 <u>+</u> 0.57	100	Начало бутони-
Хризантема	1 VII	10 N	$13 \pm 1.45 \\ 15 \pm 1.60$	65 100	Цветение Вегетативный рост
		10	8±0.40	53	Бутонизация
	III	. Растені к дл	ие, нейтра ине дня	льное	
Подсолнечник «Саратовский ран- ний»	8 VI	N 10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	100 55	Бутонизация Бутонизация

ции происходит более интенсивно на большей продолжительности дневного освещения и влияет на образование бутонов и цветов.

Следовательно формообразовательное значение ростовых гормоновауксинов в явлении фотопериодизма ограничивается процессами роста

растений.

Институт физиологии растений им. К. А. Тимирязева. Академия Наук СССР. Москва.

Поступило 4 III 1938.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ W. C. Cooper, Plant Physiology, II, № 4, 779—793 (1936). ² R. Dostál u. M. Hošek, Flora, 31, № 3, 263—286 (1937). ³ F. G. Gustafson, Proceed. of Nat. Acad. Sciences, 22, № 41, 628—636 (1936). ⁴ A. E. Hitchcocka. P. W. Zimmermann, Constr. fr. Boyce Thompson Inst., VIII, № 1, 63—79 (1936). ⁵ F. Kögl, A. I. Haagen-Smit u. H. Erxleben, ZS. f. physiol. Chemie, 228, 90—103 (1934). ⁶ Kogl F. u. H. Erxleben, ZS. f. physiol. Chemie, 325, 215—229 (1934). ⁷ F. Kögl u. F. H. F. R. Kostermans, ZS. f. physiol. Chemie, 228, 413—121 (1934). ⁸ F. Laibach u. O. Fischnich Deutch. bot. Ges., 53, H. 3, 359—364 (1935). ⁹ F. Laibach u. O. Fischnich, Ber. d. Deutsch. bot. Ges., 53, H. 5, 528—539 (1935). ¹⁰ F. Laibach u. G. Mai, Arch. f. Entwicklungsmechanik d. Organismen, 134, 200—206 (1936). ¹¹ P. W. Zimmermann. F. Wilcoxon, Contrib. fr. Boyce Thompson Inst., VII, № 3, 209—229 (1935).