Доклады Академии Наук СССР 1938. Том XVIII, № 7

ГЕНЕТИКА

л. И. ЖУРБИН

СРАВНИТЕЛЬНОЕ ИЗУЧЕНИЕ ВЕЛИЧИНЫ КЛЕТОК АУТО- И АЛЛОНОЛИПЛОИДОВ

(Представлено академиком Н. И. Вавиловым 2 XII 1937)

Настоящее исследование ставило себе целью сравнить у растений действие увеличения хроматиновой массы и действие геномов генетически близких и отдаленных родителей на размеры клетки. В качестве растений с клетками, содержащими различные количества массы хроматина, нами были взяты аутополиплоиды: диплоид, триплоид и тетраплоид Nicotiana glauca. В качестве растений с клетками, содержащими геномы, генетически менее и более отдаленные, нами были взяты аллотетраплоиды: амфидиплоид Nicotiana multivalvis×Nicotiana suaveolens и амфидиплоид Secale montanum×Triticum durum с их исходными формами. Все растения выращивались в сходных условиях. Измерения устьиц, т. е. двух замыкающих клеток, взятых вместе, производились посредством окулярмикрометра у вполне развитых фиксированных в 70° спирту листьев. Для измерений у всех листьев избиралось место в середине пластинки листа, у главной жилки. Результаты измерений приводятся в прилагаемой таблице.

В первой справа графе (внизу) приведены площади устьиц, вычисленные приблизительно путем перемножения длины устьица на ширину.

Рассмотрение полученных данных относительно ди-, три- и тетраплоида N. glauca показывает, что действительно размеры клеток увеличиваются в зависимости от увеличения массы хроматина (числа хромосом). Увеличение массы хроматина идет в арифметической прогрессии с знаменателем прогрессии, равным 12 (24, 36 и 48 хромосом). Увеличение площади клеток приближается к геометрической прогрессии с знаменателем 1.2 (862.84, 1051.22 и 1332.63 кв. микрон). Эти данные согласуются с наблюдениями Sinott, Houghtaling and Blakeslee (1934) (4).

Рассмотрение полученных данных относительно величины клеток межвидового и межродового амфидиплоидов и их родительских форм покавывает, что в первом случае площади клеток увеличились приблизительно в 1.45 раза: площади клеток родителей 797.76 и 1137.28 кв. микрон, площади клеток амфидиплоида 1410.71 кв. микрон; а во втором случае—в 1.82 раза: у родителей 1400.13 и 1543.80 кв. микрон, у амфидиплоида 2684.42 кв. микрон. Следовательно увеличение площади клеток у межродового амфидиплоида большее, чем у межвидового амфидиплоида. Впрочем данные формы нам представляются несравнимыми по признаку генетической отдаленности геномов, встретившихся друг с другом в этих амфидиплои-

Длина и ширина устьиц

	OW	-		-	-	7	Длина	m .	микронах	нах		-	-	-	-						
Растение	сом (5п)	0.22-0.81 2.32-1.22	4.82—8.82 6.18—6.82	8.48-7.18	2.14-1.88	4.44-8.14 8.74-3.44	8.03-7.74	2.73-1.43	4.09-8.78 6.89-8.09	$\frac{8.89 - 7.88}{0.07 - 9.88}$	2.87-1.07	4.87-8.87	$8.28 - 7.67 \\ 0.8 - 9.28 $	2.68—1.88 4.26—8.68	8.89—7.89 8.89—7.89	æ	M	m (h)	P (%)	р <u>п</u>	
Nicotiana glauca (2n) " glauca (3n) " glauca (4n) " multivalois " suaveolens N. multivalois " Fricticum durum Triticum durum S. montanum XT. durum	22 488 488 488 488 488 488 488	1	27 66 10 10 10 10 10 10 10 10 10 10 10 10 10	88 4 88 4 8 8 9 1 1 1 1 1 1 1 1 2 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	400000000000000000000000000000000000000	24 1 68 74 551 26 61 44 7 19 14	26 3 24 46 8 68 75 47 655 3	30000	10 11 11 11 11 11 11 11	1		29 51		22 11	1 6 7	000000000000000000000000000000000000000	33.25 43.65 43.65 43.00 39.23 43.30 78.30 78.66	0000000000	23 0 0.6 22 2 0 0.6 22 2 0 0.8 33 0 0.8 50 0 0.8	666 551 551 30.0 552 552 552 552 553 553 553 553 553 553	65 17 77 71 71 72 74 74 74 74 41
					Ширина	на в	1	микронах	X							-	-				
		8.81-8.21	8.81-7.61	$\frac{18.9 - 22.0}{2.32 - 1.22}$	4.82—8.62	9.15—5.82	8.48-7.18		0.88-6.68	8.14-1.88	3.44-4.14	9.74-7.44	2	7	$M \pm m$		P (%)	p (H	4	$M_{\partial a} + M_{uup}$	+ A
Nicotiana glauca (2n) y glauca (3n) y glauca (4n) y miltivalois N. multivalois×N. suaveolens Secale mon anum Triticum durum S. montanum×T. durum.	4 2 3 4 4 3 2 4 4 5 4 4 5 4 4 5 4 4 5 6 4 4 6 6 4 4 6 6 4 6 6 4 6 6 6 6			11 114 115 116 117 118 118 2 2 2 2 3 3 3 2 2 6 7 0 2 3 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		89 59 154 72 88 88 78 87 87 87 105 15	33 77 122 16 88 88 40 40	3 - 4 65 - 7 109 4 108 6	61 2	52 53 11	11111111111	1 1 1 1 1 1 1 1 64	250 250 250 250 250 250 250	25. 28. 28. 28. 28. 28.	95 10 10 53 53 60 99 99 99 90 10 10 10 10 10 10 10 10 10 10 10 10 10	16 005 005 005 005 006 006 007 007 009	25 14 20 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20	2.59 0.59 0.75 0.83 0.93 1.01 1.26 0.80	9.98 2.10 2.46 3.33 3.33 3.38 3.10 4.68 3.15	211111	862.84 051.22 332.63 797.76 137.28 410.71 400.13 543.80 684.42

дах, так как они относятся не только к разным семействам, но даже к раз-

ным подклассам однодольных и двудольных.

При сравнении увеличения клеток у аутотетраплоида N. glauca и у аллотетраплоида N. $multivalvis \times N.$ suaveolens находим, что в обоих случаях это увеличение одинаково, а именно в 1.5 раза (для аутотетраплоида 1.332.63: $\frac{862.84+862.84}{2}$ и для аллотетраплоида 1.410.71: $\frac{797.76+1.137.28}{2}$.

Однако при одинаковом увеличении хроматиновой массы (числа хромосом) в обоих случаях мы имеем разную генетическую отдаленность геномов: в первом случае удвоение одного и того же диплоидного набора хромосом, а во втором два набора, принадлежащих к разным видам. Следовательно генетическая отдаленность наборов хромосом у аллотетраплоида не ска-

залась на увеличении клеток.

Явление мощности, наблюдаемое у многих F_1 -гибридов, аутополиплоидов и аллополиплоидов, обусловливается численностью клеток и их величиной. Известны факты, когда гетерозис проявлялся только вследствие большого числа, т. е. интенсивности деления клеток, а их величина была меньшей, чем у родителей, или средней (меньше, чем у одного родителя, и больше, чем у другого), например у N. $tabacum \times N$. sylvestris [Kostoff, 1936 (3), страница 1936 (3). Известен ряд фактов, когда гибрид в сравнении с родителями обладал более крупными клетками, однако по величине своей являлся карликом, например N. $paniculata \times N$. glutinosa, N. $paniculata \times N$. tabacum [(3), стр. 1936 (3). Следовательно увеличение размеров клеток не обязательно приводит к гетерозису, для этого необходимо еще их интенсивное деление, т. е. их большее число.

То же самое можно сказать и относительно унивалентных и бивалентных форм, например у мха *Нурпит* (*Acrocladium*) cuspidatum (L.) Lindb. у бивалентной формы ширина клеток листа по сравнению с унивалентной формой увеличилась, а ширина листа стала меньшей, потому что число клеток уменьшилось [Wettstein, 1924 (5), стр. 176], а у мха *Funaria hygrometrica* (L.) Sibth. у бивалентной формы объем клеток по сравнению с унивалентной увеличился вдвое и листья увеличились, тогда как число клеток (в ширине листа) осталось одинаковым [(5), стр. 59].

Общеизвестны объяснения гетерозиса как следствия генного взаимодействия и влияния массы хроматина. Различные исследователи поразному детализируют эти объяснения и придают им разный удельный вес. К сожалению пока еще недостаточное количество экземпляров полученных амфидиплоидов, как N. multivalvis imes N. suaveolens, так и S. $montanum \times T$. durum, и полиплоидов N. glauca не дало возможности иметь среднюю величину их роста, характеризовать их мощность; поэтому мы еще не имеем возможности здесь привести интересное сопоставление хроматиновых масс и генетической отдаленности геномов, с одной стороны, и, с другой стороны, общего увеличения растения и увеличения клеток для приведенных полиплоидов и их исходных форм. Нам только известно, что амфидиплоиды N. multivalvis imes N. suaveolens «оказались более сильными, чем F_1 -гибриды, и имели несколько более крупные цветы» [Костов, 1937 (2)]. Кроме того амфидиплоид имел большие клетки, чем F_1 и родители, а диаметр его пыльцевых зерен равен 19.56 делениям окуляр-микрометра, тогда как пыльца N. multivalvis имела в диаметре 15.2, а N. suaveolens 15.5 деления окуляр-микрометра (1). Из сравнения этих данных о пыльце с нашими данными о размерах устьиц находим, что как пыльцевые зерна, так и устьица, у амфидиплоида увеличились одинаково по сравнению с родительскими видами.

Институт генетики. Академия Наук СССР. Москва. Поступило 25 I 1938.

дитированная литература

¹ D. Kostoff, Proceedings of the Indian Academy of Sciences, V, № 6 (1937). ² Д. Костов, ДАН, XIV, № 4 (1937). ³ D. Kostoff ZS. f. Zellforschung u. mikr. Anatomie, 24, H. 2/3 (1936). ⁴ E. W. Sinott, H. Houghtaling a. A. Blakeslee, Corn. Inst. Publ. (1934). ⁵ F. Wettstein, ZS. f. induktive Abstammungs- und Vererbungslehre, XXXIII (1924).