Доклады Академии Наук СССР 1939. том XXV, № 7

MATEMATUKA

И. М. ГЕЛЬФАНД

о кольце почти периодических функций

(Представлено академиком А. Н. Колмогоровым 10 Х 1939)

Совокупность R всех почти периодических в смысле Бера функций x(t) является согласно определениям заметки $(^1)$ нормированным кольцом, если операции сложения и умножения понимать в обычном смысле, а норму определить условием:

$$||x(t)|| = \sup_{-\infty < t < \infty} |x(t)|.$$

Заметим, что согласно теореме 8 цитированной заметки (1) это единственный (с точностью до эквивалентности) способ нормировки кольца R.

По основной теореме Бора система функций $\{e^{2\pi i \lambda t}\}$ является системой образующих кольца R.

Пусть M—произвольный максимальный идеал кольца R. При гомоморфизме $R \to \frac{R}{M}$ функция $e^{2\pi i \lambda t}$ переходит в комплексное число $\varphi(\lambda)$, причем $|\varphi(\lambda)| \le \|e^{2\pi i \lambda t}\| = 1$. Из равенства $e^{2\pi i \lambda t}e^{2\pi i (-\lambda)t} = 1$ следует, что $|\varphi(\lambda)| |\varphi(-\lambda)| = 1$, откуда $|\varphi(\lambda)| = 1$; из равенства $e^{2\pi i (\lambda + \mu)t} = e^{2\pi i \lambda t}e^{2\pi i \mu t}$ следует, что $\varphi(\lambda + \mu) = \varphi(\lambda) \varphi(\mu)$. Функция $\varphi(\lambda)$ определяет, таким образом, гомоморфное отображение аддитивной группы K действительных чисел в группу и вращений окружности; такое отображение, как известно, называется характером дискретной группы K. Покажем, что имеет место также и обратное: каждому характеру $\varphi(\lambda)$ дискретной группы K отвечает максимальный идеал M кольца R такой, что при гомоморфизме $R \to \frac{R}{M}$ функция $e^{2\pi i \lambda t}$ переходит в $\varphi(\lambda)$.

Пемма. Пусть задан полином от п переменных $P(x_1, x_2, \ldots, x_n)$. Если действительные числа $\lambda_1, \lambda_2, \ldots, \lambda_n$ линейно независимы, то

$$\max_{\substack{|x_k|=1,\ k=1,\ 2,\ \dots,\ n}} |P(x_1, x_2, \dots, x_n)| =$$

$$= \sup_{-\infty < t < \infty} |P(e^{2\pi i \lambda_1 t}, e^{2\pi i \lambda_2 t}, \dots, e^{2\pi i \lambda_n t})|.$$
(1)

Для доказательства заметим, что полином, стоящий в правой части равенства, является равномерно непрерывной функцией своих аргументов;

для заданного $\varepsilon>0$ можно найти такое $\delta>0$, что при изменении каждого аргумента на величину, не превосходящую δ , значение полинома изменяется не более, чем на ε . Функция e^{iu} равномерно непрерывна для $-\infty < u < \infty$, и поэтому существует $\eta>0$ такое, что $|u_1-u_2|<\eta$ влечет $|e^{iu_1}-e^{iu_2}|<\delta$. Пусть $x_1^0=e^{2\pi i a_1}, x_2^0=e^{2\pi i a_2}, \ldots, x_n^0=e^{2\pi i a_n}$ —произвольные значения переменных x_1, x_2, \ldots, x_n . По теореме Кронекера можно найти действительное число t_0 и целые числа m_1, m_2, \ldots, m_n так, что будут выполнены неравенства:

$$|a_k - \lambda_k t_0 - m_k| < \frac{\eta}{2\pi} \quad (k = 1, 2, ..., n)$$

или

$$|(2\pi a_k - 2\pi m_k) - 2\pi \lambda_k t_0| < \eta,$$

откуда

$$|e^{2\pi i a_k - 2\pi i m_k} - e^{2\pi i \lambda_k t_0}| = |e^{2\pi i a_k} - e^{2\pi i \lambda_k t_0}| < \delta,$$

$$|P(x_1^0, x_2^0, \dots, x_n^0) - P(e^{2\pi i \lambda_1 t_0}, e^{2\pi i \lambda_2 t_0}, \dots, e^{2\pi i \lambda_n t_0})| < \varepsilon.$$
(2)

Равенство (1) является очевидным следствием неравенства (2). Пусть теперь задан произвольный характер $\varphi(\lambda)$ группы K. Поставим в соответствие тригонометрическому голиному $P\left(e^{2\pi i \lambda_1 t}, e^{2\pi i \lambda_2 t}, \ldots, e^{2\pi i \lambda_n t}\right)$, где $\lambda_1, \lambda_2, \ldots, \lambda_n$ —произвольные действительные числа, величину

$$P(\varphi(\lambda_1), \varphi(\lambda_2), \ldots, \varphi(\lambda_n)).$$
 (3)

Из условия $\varphi(\lambda + \mu) = \varphi(\lambda) \varphi(\mu)$ непосредственно следует, что сумме и произведению тригонометрических полиномов соответствует сумма и произведение величин (3). Из доказанной леммы следует, что в том случае, когда $\lambda_1, \lambda_2, \ldots, \lambda_n$ линейно независимы,

$$|P(\varphi(\lambda_1), \varphi(\lambda_2), \ldots, \varphi(\lambda_n))| \leq ||P(e^{2\pi i \lambda_1 t}, e^{2\pi i \lambda_2 t}, \ldots, e^{2\pi i \lambda_n t})||.$$

Таким образом, равномерно сходящейся последовательности таких полиномов отвечает сходящаяся последовательность величин (3). Так как линейную комбинацию $\sum c_k e^{2\pi i \mu_k t}$ с произвольными μ_k можно представить, как полином $P\left(e^{2\pi i \lambda_1 t}, e^{2\pi i \lambda_2 t}, \ldots, e^{2\pi i \lambda_n t}\right)$ с линейно независимыми λ_k , то, применяя основную теорему Бора, можно распространить соответствие между полиномами $P\left(e^{2\pi i \lambda_1 t}, e^{2\pi i \lambda_2 t}, \ldots, e^{2\pi i \lambda_n t}\right)$ и комплексными числами (3) на все функции $x\left(t\right) \in R$. При этом сумме и произведению элементов $x\left(t\right)$ соответствуют сумма и произведение чисел; отсюда — те функции $x\left(t\right)$, которым соответствует число 0, образуют максимальный идеал $M \subset R$.

Согласно общей теории R гомоморфно отображается в кольце непрерывных функций, определенных на множестве всех своих максимальных идеалов; так как здесь выполнены условия теоремы $7 \, (^1)$, то мы можем заключить следующее.

Основная теорема. Кольцо R всех почти периодических по Бору функций изоморфно кольцу всех непрерывных функций, определенных на

группе характеров аддитивной группы действительных чисел.

Топология на группу характеров согласно (1) вводится так: окрестностью характера $\varphi_0(\lambda)$ называется совокупность всех характеров $\varphi(\lambda)$, которые удовлетворяют неравенствам:

$$|\varphi(\lambda_k)-\varphi_0(\lambda_k)|<\varepsilon \quad (k=1,2,\ldots,n),$$

тде $\varepsilon > 0_1; \lambda_1, \lambda_2, \ldots, \lambda_n$ (*n*—любое целое число)—произвольные фикси-576

рованные числа. Группа характеров, топологизированная этим способом,

является биксмпактным хаусдорфовым пространством (1. Характеры $\varphi(\lambda)$, имеющие вид $e^{2\pi i \lambda t_0}$ (непрерывные характеры), образуют в группе всех характеров плотную подгруппу, изоморфную аддитивной группе действительных чисел, со следующей топологией: окрестность числа t_0 образуют все числа t, удовлетворяющие неравенствам

$$|t-t_0-n\lambda_i|<\delta_i \ (i=1,2,\ldots,m;\ n=0,\pm 1,\pm 2,\ldots),$$

где λ_i, δ_i (*m*—любое целое число)—произвольные фиксированные числа.

Математический институт им. В. А. Стеклова Академия Наук СССР Москва

Поступило 17 X 1939

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. М. Гельфанд, ДАН, XXIII, № 5 (1939).

⁽¹ Эта топологизация группы характеров (как множества максимальных идеалов) совпадает с обычной топологизацией группы характеров, введенной van Kampen'ом.

² Доклады Акад. Наук СССР, 1939, т. XXV, № 7.