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Abstract. The influence of the initial parameters of a low-boiling working fluid on the 

thermodynamic efficiency for two turbo-expander cycles (with a heat exchanger at the outlet of 

the turbo-expander and without a heat exchanger) is considered. For each of the studied cycles, 
the dependences of the exergy efficiency on the temperature of the low-boiling working fluid 

before the turboexpander at a constant pressure and the dependence of the exergetic efficiency 

on the pressure of the low-boiling working fluid before the turbo-expander at a constant 

temperature were obtained. The dependences of exergy losses on the elements of the studied 

cycles on the parameters of a low-boiling working fluid are constructed and their analysis is 

carried out. For the considered schemes, the dependences of the exergy efficiency on pressure 

are constructed at various temperatures of the low-boiling working fluid in front of the 

turboexpander. An analysis of the results showed that at any temperature of a low-boiling 

working fluid, it is possible to determine the pressure at which the exergy efficiency of the 

investigated circuit will be maximum. Graphic dependencies are obtained that are 

characterized, from a thermodynamic point of view, by the optimal parameters of a low-boiling 
working fluid. Comparison of these dependences revealed that, over the entire range of studied 

temperatures (from 100 °C to 300 °C), a cycle with a heat exchanger at the outlet of the 

turboexpander has a large exergy efficiency. These graphical dependencies make it possible to 

determine the optimal parameters of the working fluid in the turboexpander cycle, as well as to 

predict the change in the exergy efficiency of the installation with changing parameters of the 

working fluid.  

1. Introduction 

Trigeneration complexes are an effective means of satisfying consumers with electricity, heat and 
cold, which are necessary in various industries, in the service sector, and in housing and communal 

services [1,2]. The energy source for such plants are: solar energy, biofuel, geothermal energy, thermal 

waste from enterprises, etc. Examples of schemes for such installations are discussed in [3-5]. One of 
the main cycles of such complexes is a turbo-expander cycle, in which low-boiling working fluids 

(LBWF) (with a lower boiling point than that of water) are used as a working fluid. 

Large studies in the field of increasing the efficiency of cycles have been carried out for steam 

turbines, where water vapor is used as a working fluid. The main way to increase the efficiency of the 
steam cycle is to increase the parameters of the steam in front of the turbine [6].  

It is known that the T-s water diagram has a saturation line similar to “wet” low boiling fluids. 

However, some low-boiling fluids have a “dry” or “isentropic” saturated steam line in the T-s diagram 
[7]. 
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Preliminary studies have shown that it is possible to increase the efficiency of turbo-expander 

cycles by increasing the parameters of a low-boiling working fluid (both temperature and pressure) 

before the turbo-expander, but it is not clear to what extent it is advisable to increase these parameters 
and which parameters are considered optimal. 

The aim of this work is to study the influence of the parameters of a low-boiling working fluid in 

front of a turboexpander on the thermodynamic efficiency of a turboexpander cycle and determining 
the thermodynamically optimal working fluid parameters. 

2. Thermodynamic analysis technique 

Evaluation of the effectiveness of the studied cycles is possible using exergy analysis, the result of 

which is the determination of exergy efficiency [8-10], relative units: 
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where EE  – exergy flows, the sum or difference of which determines the resulting effect; CE  – 

exergy flows whose sum or difference determines costs; D  – cycle exergy loss. 

Determine the exergy loss in the cycle is necessary to determine the exergy efficiency. These losses 

can be represented as the sum of the exergy losses for the elements of the studied cycle, which depend 

on the temperature and pressure of the low-boiling working fluid in front of the turboexpander, kJ/kg: 

 3 3 RB 3 3 TE 3 3 HE 3 3 CD 3 P 3D(P ,T )=D (P ,T )+D (P ,T )+D (P ,T )+D (P )+D (P )   

where RBD  – loss of exergy in the recovery boiler; TED  – loss of exergy in a turboexpander; HED  – 

exergy loss in the heat exchanger; CDD  – loss of exergy in the condenser; PD  – loss of exergy in the 

pump. 

Loss of exergy in the recovery boiler 1 (рис. 1, 2), kJ/kg:  

– for circuit with heat exchanger (рис. 2): 

 RB 3 3 q 2 3 3 3 3 3D (P ,T )=Е +Е (P ,T )-Е (P ,T )   

– for circuit without heat exchanger (рис. 1): 

 RB 3 3 q 2 3 3 3 3D (P ,T )=Е +Е (P )-Е (P ,T )   

where qЕ  – exergy of flue gases supplied to the recovery boiler; 2 3 3Е (P ,T )  – exergy of a low-boiling 

working fluid at the inlet to the recovery boiler (after heating in a heat exchanger); 2 3Е (P )  – exergy of 

a low-boiling working fluid at the inlet to the recovery boiler (without heating in a heat exchanger); 

3 3 3Е (P ,T )  – exergy of a low-boiling working fluid at the outlet of the recovery boiler. 

Exergy of heat supplied to the recovery boiler, kJ/kg: 

 RCC 0
q 1 t 1

hfg

T
Е =Q ×η =Q ×(1- )

T
  

where 1Q  – amount of heat supplied to the recovery boiler with flue gas; RCC
tη  – thermal efficiency of 

a reversible Carnot cycle; 0T  – ambient temperature; hfgT  – temperature of a hot source of thermal 

energy, in this case, hot flue gas entering the recovery boiler. 

Exergy losses in a Turbo Expander 2 (рис. 1, 2), kJ/kg: 

 TE 3 3 3 3 3 4 3 3 aTE 3 3 mechTE genD (P ,T )=Е (P ,T )-Е (P ,T )-L (P ,T )×η ×η   
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where aTE 3 3L (P ,T )  – actual work done in a turboexpander; 4 3 3Е (P ,T )  – exergy of LBVF at the exit of 

the turboexpander; mechTEη  – mechanical efficiency of a turboexpander; genη  – generator efficiency. 

Actual work done in an expander, kJ: 

 aTE 3 3 3 3 3 4 3 3 LBVFL (P ,T )=(h (P ,T )-h (P ,T ))×G   

where LBVFG  – consumption of low-boiling working fluid in the cycle. 

Exergy loss in the heat exchanger 6 (рис. 2), kJ/kg: 

 HE 3 3 4 3 3 5 3 2 3 3 2 3D (P ,T )=(Е (P ,T )-Е (P ))-(Е (P ,T )-Е (P ))   

where 5 3Е (P )  – LBVF vapor exergy after cooling in a heat exchanger. 

Loss of exergy in the condenser 4 (рис. 1, 2), kJ/kg: 

 CD 3 5 3 1D (P )=Е (P )-Е   

where 1Е  – exergy of LBVF at the output of the condenser. 

Loss of exergy in the pump 5 (рис. 1, 2), kJ/kg: 

 P 3 aP 3 2 3 1D (P )=L (P )-(Е (P )-Е )   

where дНL  – actual work performed by the pump. 

Actual work performed by the pump, kJ: 

 aP 3 2 3 1 LBVFL (P )=(h (P )-h )×G   

3. Investigated schemes and analysis of the results 
Consider the influence of the temperature of the working fluid in front of the turboexpander on the 

efficiency of the turbine expander cycle without a heat exchanger (Fig. 1). As a low-boiling working 

fluid, R236EA freon was selected, which has a “dry” saturation line characteristic, a zero ozone layer 
destruction potential and a global warming potential of 1370.  

The following elements are presented on the diagram (Fig. 1,2): 1 – recovery boiler; 2 – 

turboexpander; 3 – generator; 4 – condenser; 5 – pump; 6 – heat exchanger. 
 

  
Figure 1. Scheme of a turboexpander cycle 

without a heat exchanger.  

Figure 2. Scheme of a turbo-expander cycle with 

a heat exchanger at the outlet of the 

turboexpander. 
 

The cycle of the investigated circuit for various temperatures of a low-boiling working fluid is 

presented in Figure 3. Cycles (Fig. 3,4) consist of the following processes: 1–2 – pressure increase of a 
low-boiling working fluid in the pump 5 (fig. 1,2); 2–3 heating and steam generation in the recovery 

boiler 1 (Fig. 1); 3 – 3a, 3 – 3b, 3 – 3c, 3 – 3d, 3 – 3e – overheating in the boiler superheater 1 (Fig. 1); 

3 – 4, 3a – 4a, 3b – 4b, 3c – 4c, 3d – 4d, 3e – 4e – expansion of the low boiling fluid in a 
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turboexpander 2 (Fig. 1,2); 4 – 1, 4a – 1, 4b – 1, 4c – 1, 4d – 1, 4e – 1 – cooling and condensation of 

the vapor of the working fluid in the condenser 4 (Fig. 1,2). 

 

  
Figure 3. The cycle of a turboexpander unit at 

various temperatures of a low-boiling working 

fluid (without a heat exchanger). 

Figure 4. The cycle of the turboexpander unit at 

various pressures of the low-boiling working fluid 

(without heat exchanger). 
 

The calculation results are presented in Figure 5 (a) in the form of the dependence of the exergy 

efficiency on the temperatures of the low-boiling working fluid in front of the turboexpander. From 

this dependence, it can be noted that an increase in temperature leads to a slight increase in exergy 
efficiency but only to a certain point, after which it begins to decrease. Having studied the dependence 

of the exergy losses on the elements of the studied cycle on the temperature of the low-boiling 

working fluid in front of the turboexpander (Fig. 3 (a)), it can be noted that the exergy efficiency is 
mainly influenced by the exergy losses in the recovery boiler (decrease with increasing temperature) 

and the exergy losses in the condenser (increase with increasing temperature). The steeper 

characteristic of the exergy losses in the condenser as compared with the exergy losses in the recovery 
boiler leads to the fact that the curve of the dependence of the exergy efficiency on temperature ceases 

to grow at a certain moment, changes its slope and begins to decrease.  

 

 
Figure 5. Dependence of exergy efficiency and exergy losses on the elements of the studied cycle on 

the temperature of the low-boiling working fluid in front of the turboexpander (a) and from the 
pressure of a low-boiling working fluid in front of the turboexpander (b) (turboexpander cycle without 

heat exchanger). 
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Let us consider the effect of the pressure of a low-boiling working fluid on the efficiency of the 

turbo-expander cycle (Fig. 1) when using the same working fluid (R236EA). The cycle of the 

investigated circuit at various pressures of the low-boiling working fluid is presented in Figure 4. 
The research results are presented in Figure 5 (b) in the form of the dependence of the exergy 

efficiency on the pressure of the low-boiling working fluid in front of the turboexpander. From this 

dependence, it can be noted that an increase in pressure, as well as an increase in temperature, leads to 
an increase in the efficiency of the test cycle only to a certain point, after which a further increase in 

pressure becomes impractical. Having studied the dependence of the exergy losses on the elements of 

the studied cycle on the pressure of the low-boiling working fluid in front of the turboexpander (Fig. 5 

(b)), it can be noted that with increasing pressure the exergy losses in the condenser decrease, the 
exergy losses in the turboexpander increase, and the exergy losses in the recovery boiler first decrease, 

then they change their direction and begin to grow slightly.  

In some studies, to cool an overheated low-boiling working fluid that has left the turbine expander, 
it is proposed to use a heat exchanger [11], in which the low-boiling working fluid vapor is cooled to 

the boiling point at a given pressure, heating the condensate of the working fluid obtained in the unit’s 

condenser.  

Similar studies were carried out for a circuit with a heat exchanger at the outlet of the 
turboexpander (Fig. 2). Freon R236EA was adopted as a working fluid. 

The cycle of the studied circuit for different temperatures of LBVF is shown in Figure 6. The 

cycles (Fig. 6,7) consist of the following processes: 1–2 – pressure increase of a low-boiling working 
fluid in the pump 5; 2 – 2', 2 – 2'a, 2 – 2'b, 2 – 2'c, 2 – 2'd – heating the working fluid in a heat 

exchanger 4; 2' – 3, 2'a – 3, 2'b – 3, 2'c – 3, 2'd – 3 – heating and steam generation in the recovery 

boiler 1; 3 – 3a, 3 – 3b, 3 – 3c, 3 – 3d – overheating of the working fluid in the superheater of the 
recovery boiler 1; 2'–3, 2'a – 3a, 2'b – 3b, 2'c – 3c, 2'd – 3d, 2'e – 3e – heating, vaporization and 

overheating in the recovery boiler 1; 3 – 4, 3a – 4a, 3b – 4b, 3c – 4c, 3d – 4d – expansion of the low 

boiling fluid in a turboexpander 2; 4 – 5, 4a – 5, 4b – 5, 4c – 5, 4d – 5 – refrigerant vapor cooling in a 

heat exchanger 6; 5 – 1 – cooling and condensing the refrigerant vapor in the condenser 4. 
 

 
 

Figure 6. The cycle of a turboexpander unit at 

various temperatures of a low-boiling working 

fluid (with a heat exchanger). 

Figure 7. The cycle of the turboexpander unit at 

various pressures of the low-boiling working fluid 

(with heat exchanger). 
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Figure 8. Dependence of exergy efficiency and exergy losses on the elements of the studied cycle on 

the temperature of the low-boiling working fluid in front of the turboexpander (a) and from the 

pressure of a low-boiling working fluid in front of the turboexpander (b) (turboexpander cycle with 
heat exchanger). 

 

The calculation results are presented in Figure 8 (a) in the form of the dependence of the exergy 

efficiency on the temperatures of the low-boiling working fluid in front of the turboexpander. From 
this dependence it can be noted that, unlike the circuit without a heat exchanger, any increase in 

temperature leads to an increase in exergy efficiency. At the same temperature of the working fluid in 

front of the turboexpander (Fig. 1,2), the values of exergy efficiency are higher in the scheme with a 
heat exchanger. An analysis of the dependence of exergy losses on the elements of the studied cycle 

on the temperature of the low-boiling working fluid before the turbine expander (Fig. 8 (a)) showed 

that the exergy efficiency is mainly influenced by exergy losses in the heat exchanger (increase with 
increasing temperature) and exergy losses in the recovery boiler (with increasing temperature are 

decreasing). 

Let us consider the effect of pressure of a low-boiling working fluid on the exergy efficiency of a 

turbo-expander with a heat exchanger (Fig. 2). As a low-boiling working fluid, as in previous cases, 
Freon R236EA was selected. The cycle of the investigated circuit is shown in Figure 7. 

The research results are presented in Figure 8 (b) in the form of the dependence of the exergy 

efficiency on the pressure of the low-boiling working fluid in front of the turboexpander. From this 
dependence, it can be noted that with increasing pressure, the exergy efficiency increases only to a 

certain pressure, after which it changes its direction and begins to decrease. The reason for this result 

is a change in the shape of the exergy loss curve in the waste heat boiler (Fig. 8 (b)), which first 
decreases with increasing pressure, and then change directions and begin to grow. 

For the studied circuits (Fig. 1,2), the dependences of the exergy efficiency on pressure are 

constructed at various temperatures of the low-boiling working fluid in front of the turbo expander. 

For each dependence of exergy efficiency, the point with the maximum value is determined. This 
point shows the maximum exergy efficiency that can be obtained for a given temperature of a low-

boiling working fluid in front of a turboexpander. Combining these “maximum” points, we obtain a 

curve characterizing the optimal ratio of temperature and pressure in front of the turboexpander to 
obtain maximum exergy efficiency (Fig. 9 (a),(b)). Thus, by constructing a line of maximum 

efficiency for a particular circuit, it is possible to quickly and with a sufficient degree of accuracy 

determine the optimal pressure of a low-boiling working fluid in front of a turbo-expander for a given 

temperature, as well as predict the exergy efficiency of the installation when changing the parameters 
of the working fluid.  
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Figure 9. Dependence of exergy efficiency on pressure at various temperatures of a low-boiling 

working fluid for a circuit without a heat exchanger (a) and for a circuit with a heat exchanger (b). 
 

Comparing the lines of maximum efficiency for two circuits with and without a heat exchanger 

shown in Figure 9, it was found that over the entire range of studied temperatures (from 100 °C to 300 

°C), a cycle with a heat exchanger at the exit of the turbine expander has a large exergy efficiency. 
You can also notice that at the same temperature of the working fluid, the value of the optimal 

pressure for a circuit without a heat exchanger is many times greater than for a circuit with a heat 

exchanger. 

4. Conclusion 
An increase in the temperature of the working fluid in front of the turboexpander without changing the 

pressure, as well as an increase in pressure without changing the temperature in the turbine expander 

without a heat exchanger, do not always lead to an increase in the exergy efficiency of the cycle. 
Exergy analysis showed that changing the parameters of the working fluid in front of the 

turboexpander primarily affects the loss of exergy in the recovery boiler and the loss of exergy in the 

condenser.  
In turn, increasing the temperature of the working fluid without changing the pressure in the 

turboexpander cycle with a heat exchanger leads to an increase in exergy efficiency over the entire 

range of temperatures studied (from 100 °C to 300 °C), however, increasing pressure without 
changing the temperature does not always lead to a positive effect. Changing the parameters of the 

working fluid in front of the turboexpander has a major effect on the loss of exergy in the recovery 

boiler and the loss of exergy in the heat exchanger. 

It was revealed that at any temperature of a low-boiling working fluid, it is possible to determine 
the pressure at which the exergy efficiency of the circuits under study will be maximum. The lines of 

maximum exergetic efficiency were constructed for the working fluid under study, which make it 

possible to determine the optimal pressure of the low-boiling working fluid in front of the turbo-
expander for a given temperature, as well as to predict the exergetic efficiency of the installation when 

the parameters of the working fluid are changed. Under the same initial conditions, a cycle with a heat 

exchanger at the outlet of the turboexpander has a large exergy efficiency.  
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