Таблина 2

Периоды времени между текущими ремонтами оборудования при учете требуемого уровня надежности электроснабжения

Наименование оборудования	Период времени t_m , год		
	1 категория	2 категория	3 категория
Силовые трансформаторы 630-1000 кВА, 6-10 кВ	1,15	1,95	2,4
Масляные выключатели типа ВМП-10	0,75	1,3	1,4
Выключатели нагрузки	0,65	1,05	1,35
Автоматические выключатели	1,5	2,1	2,55
Силовые кабели 6-10 кВ, проложенные в траншее, 1км	0,95	1,55	1,75

Выводы:

- 1. При установлении межремонтных периодов электрооборудования подстанций и линий электропередачи необходимо учитывать требуемую надежность электроснабжения.
- 2. Межремонтные периоды электрооборудования и линий электропередач зависят от конкретных условий их работы и должны определяться на основании действительных значений M, ω, σ и 3_{ok} элементов конкретной системы электроснабжения.
- 3. Периоды времени между капитальными и текущими ремонтами электрооборудования и линий электропередач целесообразно определять, соответственно, по формулам (1) и (3).
- 4. Корректировка межремонтных периодов при учете надежности электроснабжения приводит к более рациональному распределению средств при проведении ППР электрооборудования и линий электропередач.

АНАЛИЗ НЕДОСТАТКОВ ГОСТ ПО НАГРУЗОЧНОЙ СПОСОБНОСТИ МАСЛЯНЫХ ТРАНСФОРМАТОРОВ

Д.М. Лось, Д.И. Зализный

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Научный руководитель Рунов Ю.А.

ГОСТ 14209-85 "Трансформаторы силовые масляные общего назначения" является основным документом по определению допустимых нагрузок и выбору номинальных мощностей трансформаторов системы электроснабжения. Однако анализ этого нормативного документа выявил ряд серьёзных недостатков, рассмотрению которых и просвещена данная статья.

Основными параметрами для определения допустимых нагрузок трансформатора являются тепловые параметры — температура наиболее нагретой точки обмотки (ННТ), температура масла в верхних слоях и износ витковой изоляции обмотки. Однако когда трансформатор недогружен, скорость износа витковой изоляции будет невысока. И по истечении нормативного срока службы трансформатора витковая

изоляция не будет полностью изношена. Поэтому следует пересмотреть принятые в [1] положения по допустимым нагрузкам.

Также отсутствие современных приборов контроля тепловых параметров в эксплуатации не позволяет осуществить требуемую загрузку трансформатора. А это в свою очередь ведёт к дополнительной трате средств на содержание парка трансформаторов на предприятии.

Следует упрекнуть ГОСТ в излишней упрощённости. В первую очередь это касается рассмотрения трансформатора в тепловом отношении как системы двух однородных тел — обмотки и масла. Причём, при нагрузках и перегрузках длительностью более 0,5 ч в [1] советуют использовать в расчётах только тепловую инерционность масла. В случае же длительности нагрузок менее 0,5 ч советуют учитывать ещё и инерционность обмотки (τ_{06}). Однако, в то время как тепловая постоянная времени масла дана (определена в ГОСТ как постоянная времени трансформатора τ), о величине τ_{06} не имеется никаких сведений.

Проанализируем выражение для температуры ННТ в переходном тепловом режиме, данное в [1].

Известно, повышение температуры в трансформаторе обусловлено повышением потерь. Сами же потери складываются из потерь короткого замыкания (зависят от нагрузки) и потерь холостого хода (постоянны). Поэтому выражение для температуры ННТ в переходном тепловом режиме должно содержать постоянную температуру, обусловленную потерями холостого хода.

С учётом вышеизложенного и на основе [2] предполагается рассматривать масляный трансформатор в тепловом отношении как систему трёх однородных тел — магнитопровод, обмотка, масло. Подробно тепловая модель масляных трансформаторов дана в [2].

Далее в ГОСТ для расчёта норм допустимых нагрузок рекомендовано преобразование исходного графика нагрузки в эквивалентный двухступенчатый. Причём закон преобразования (квадратичный) не учитывает физики тепловых процессов, протекающих в масляных трансформаторах. Более того, в стороне остаются потери в стали сердечника. Закономерно, следовательно, ожидать, заниженные значения температур. Существенная ошибка появится и при расчёте износа витковой изоляции.

Понятие "эквивалентный" в ГОСТ встречается и применительно к температуре охлаждающей среды. Рекомендовано изменяющуюся температуру окружающей среды заменять эквивалентной, т. е. условно постоянной за принятое время. Замена реального изменения температуры условно постоянной температурой также неизбежно приведёт к занижению максимальных температур нагрева. Яркая критика данных положений дана в [3].

Для оценки различий в тепловых расчётных приведём зависимости, полученные для исходного графика нагрузки и двухступенчатого эквивалентного. При построении кривых нагревания и износа для масляного трансформатора по уравнениям, приведённым в [2], будем использовать трансформатор ТМ–1000/10.

Рис. 1. Кривые нагревания совместно с исходным К1 и эквивалентным двухступенчатым К2 графиками нагрузки

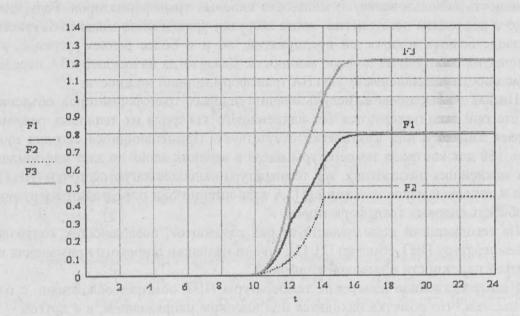


Рис. 2. Кривые износа витковой изоляции

На графиках: Θ 1, F1 — соответственно, температура ННТ по методике [1] и износ витковой изоляции для нагрузки K1; Θ 2, F2 — то же для нагрузки K2; Θ 3, F3 — соответственно, температура ННТ и износ витковой изоляции для нагрузки K1 по уравнениям, приведённым в [2].

Из рис. 1 видны максимальные значения температур ННТ обмотки для суточного графика нагрузки: $\Theta1_{\text{max}} = 116,4$ °C, $\Theta2_{\text{max}} = 113,8$ °C, $\Theta3_{\text{max}} = 121,1$ °C.

Согласно рис. 2 относительный износ за сутки: F1 = 0,79, F2 = 0,44, F3 = 1,21. Погрешности в расчёте износа (между F1 и F2) 44,3 %, (между F1 и F3) 34,7 %. На основе полученных данных можно сделать выводы:

1. Тепловой расчёт по методике [1] даёт заниженные значения температур нагрева.

2. Особенно большие погрешности в тепловом расчёте возникают при замене исходного графика нагрузки двухступенчатым эквивалентным.

Литература

- 1. ГОСТ 14209-85. Трансформаторы силовые масляные общего назначения. Допустимые нагрузки. М., 1987.
- 2. Боднар В.В. Нагрузочная способность силовых масляных трансформаторов. М.: Энергоатомиздат, 1983.
- 3. Рунов Ю.А. Нужно ли преобразование заданного многоступенчатого графика //Электоэнергетика. 1999. № 1.

ИНЕРЦИОННОЕ ЗВЕНО С БОЛЬШОЙ ПОСТОЯННОЙ ВРЕМЕНИ ДЛЯ ТЕПЛОВОЙ МОДЕЛИ МАСЛЯНЫХ ТРАНСФОРМАТОРОВ

Д.И. Зализный, Д.М. Лось

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого», Республика Беларусь

Научный руководитель Рунов Ю.А.

Одна из основных проблем отечественного электроснабжения — это низкая эффективность использования по мощности силовых трансформаторов. Речь идет не только о последнем десятилетии, когда нагрузки чрезвычайно малы из-за снижения производственных мощностей предприятий, но и о более раннем периоде, когда предприятия работали на полную мощность. Даже тогда на каждый кВА передаваемой мощности устанавливали 2-3 кВА трансформаторной мощности.

Низкая эффективность использования силовых трансформаторов объясняется тем, что они эксплуатируются без надлежащего контроля их тепловых режимов и тепловая защита в них фактически отсутствует. Применяющийся сегодня прибор ТКП – 160 для контроля температуры масла в верхних слоях не дает информации о таких важнейших показателях, как температура наиболее нагретой точки (ННТ) обмотки и тепловой износ изоляции [1]. А ведь именно они определяют нагрузочную способность силовых трансформаторов.

На сегодняшний день существует ряд разработок, позволяющих контролировать температуру ННТ обмотки [2], [3], но они не нашли широкого применения из-за их низкой надежности и высокой стоимости.

Непосредственное измерение температуры ННТ обмотки осложнено, с одной стороны, тем, что обмотка находится под высоким напряжением, а с другой — тем, что датчики измеряющего устройства можно устанавливать только на этапе сборки трансформатора. Поэтому более эффективным и целесообразным является метод тепловых моделей [2]. Устройства, работающие на основе данного метода, измеряют температуру ННТ обмотки косвенно, используя для расчета тепловых параметров физико-математическую тепловую модель. Эта модель должна быть максимально приближена к реальным процессам в трансформаторе.

В процессе теоретических исследований нами была рассмотрена и усовершенствована математическая тепловая модель силовых масляных трансформаторов как системы трех однородных тел: обмотки, масла и магнитопровода, приведенная в [2]. На основе полученных расчетных соотношений разработана принципиальная схема требуемого устройства.

Его принцип действия состоит в следующем. В процессе работы устройство измеряет ток нагрузки силового трансформатора, температуру окружающего воздуха и