Доклады Академии Наук СССР 1939. том XXV, № 1

ФИЗИКА

г. голобородько и А. ЛЕЙНУНСКИЙ

РАССЕЯНИЕ ФОТОНЕЙТРОНОВ ИЗ ДЕЙТЕРИЯ ЯДРАМИ АТОМОВ ТЯЖЕЛЫХ ЭЛЕМЕНТОВ

(Представлено академиком С. И. Вавиловым 3 VIII 1939)

Настоящая работа является продолжением наших предыдущих измерений поперечников рассеяния фотонейтронов RaTh—D с энергиями около 210 kV ядрами атомов легких элементов от водорода до кальция(1).

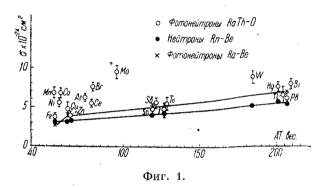
Методика измерений осталась прежней. 125 мг RaTh в небольшой стеклянной ампулке помещались в центре тонкостенного латунного шара, наполненного 99.6%. $\rm D_2O$ в количестве 50 см³. На расстоянии 27 см помещался диспрозиевый детектор цилиндрической формы, окруженный парафиновым шаром диаметром 13 см. Детектор облучался до насыщения и затем измерялась его активность тонкостенным счетчиком Гейгера—Мюллера. Рассеиватель в виде цилиндрического диска диаметром 8 см помещался на расстоянии 9 см от центра источника фотонейтронов. Измерения производились непосредственно одно за другим с рассеивателем и без рассеивателя. Фон счетчика во время измерений активности детектора не контролировался, а измерялся отдельно после детектора. Начальная активность детектора составляла 90 отбросов в 1 мин. при фоне 10 отбросов в 1 мин. (¹. Чувствительность счетчика контролировалась урановым стандартом.

На непараллельность пучка фотонейтронов (геометрию установки) вводилась поправка. Поперечники с вычислялись по формуле

$$\sigma = \frac{1}{N\delta} \ln \frac{1-\alpha}{\frac{a}{b}-\alpha},\tag{1}$$

где α —поправка на геометрию установки, N—число ядер в кубических сантиметрах рассеивателя, δ —толщина рассеивателя, a и b—числа отсчетов с рассеивателем и без него.

Результаты измерений приведены в табл. 1 и на фиг. 1. Для сравнения в табл. 1 приведены поперечники рассеяния фотонейтронов Ra—Be, измеренные раньше в нашей лаборатории. На фиг. 1 приведены также данные Даннинга (2) для быстрых нейтронов Rn—Be.


Неправильные и резкие колебания поперечников рассеяния, обнаруженные в области легких элементов (1), продолжаются и в области более тяжелых элементов вплоть до висмута. Эти колебания лежат далеко за пределами статистических погрешностей эксперимента и, очевидно,

⁽¹ Для уменьшения фона счетчик был защищен слоем свинца толщиной 10 см.

Эле- мент	Атомный вес	с 10 ²⁴ см ² Фотоней- троны RaTh+O	с · 10 ²⁴ см ² Фотоней- троны Ra+Be	Эле- мент	Атомный вес	с · 10 ²⁴ см ² Фотоней- троны RaTh+O	с · 10 ²⁴ см ² Фотоней- троны Ra+Be
Mn Fe Co Ni Cu Zn As Se Br	54.93 55.84 58.94 58.69 63.57 65.38 74.93 79.20 79.92	6.9 ± 0.7 3.6 ± 0.3 6.8 ± 0.6 5.7 ± 0.6 4.8 ± 1.0 4.0 ± 0.4 6.3 ± 0.5 5.5 ± 0.5 7.8 ± 0.8	2.7±0.5 	Mo Sn Sb Te I W Hg Tl Bb	96.00 418.70 421.76 127.50 126.93 484.00 200.61 204.39 207.22 209.00	$\begin{array}{c} 9.6 \pm 1.2 \\ 4.9 \pm 0.6 \\ 5.8 \pm 0.7 \\ 5.7 \pm 0.9 \\ 4.7 \pm 0.8 \\ 9.0 \pm 0.7 \\ 7.8 \pm 0.6 \\ 6.7 \pm 1.2 \\ 6.2 \pm 0.7 \\ 8.4 \pm 0.8 \end{array}$	5.2±1.1 — — — — — — — — 7.3±1.4

должны быть приписаны свойствам самих ядер. Это явление не представляется нам в настоящее время легко объяснимым.

Возможное объяснение этих колебаний тем, что в данном случае мы измеряем не собственно поперечник рассеяния, а суммарный попереч-

ник—рассеяния—поглощения, по всей вероятности, исключается, так как поперечники поглощения для многих элементов с фотонейтронами данных энергий измерялись Гриффитсом и Гальбаном и Коварским (3,4), а также раньше в нашей лаборатории были определены высшие пределы поперечников поглощения (5). Все эти измерения дают малые поперечники поглощения порядка 10^{-25} — 10^{-26} см².

Для более детального исследования этих явлений нами в настоящее время ведутся измерения поперечников рассеяния с фотонейтронами других энергий.

Украинский физико-технический институт Харьков Поступило 1 VIII 1939

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В печати. ² D u n n i n g и др., Phys. Rev., 48, 277 (1935). ³ G r i f f i t s, Proc. Roy. Soc., A 170, 513 (1939). ⁴ H a l b a n a. K o w a r s k i, Nature, 142, 392 (1938). ⁵ L e i p u n s k i и др. Sowjet. Phys., 10, 751 (1936).