Доклады Академии Наук СССР 1939. том XXIV, № 9

ФИЗИКА

Б. Г. ЛАЗАРЕВ, Н. М. НАХИМОВИЧ И Е. А. ПАРФЕНОВА

ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ МОНОКРИСТАЛЛОВ ЦИНКА И КАДМИЯ В МАГНИТНОМ ПОЛЕ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ

(Представлено академиком С. И. Вавиловы и 25 VII 1939)

1. Увеличение сопротивления монокристаллов металлов в поперечном поле зависит от угла, образуемого током и полем с осями решетки кристалла, причем этот «эффект ориентации» возрастает с понижением температуры. Такого рода анизотропия обнаружена исследованиями Юсти и Шефферса (¹) также для многих металлов кубической системы, проводимость которых при отсутствии магнитного поля является изотропной. Для некубических металлов, из которых были детально исследованы Де-Гаазом и др. галий и висмут (²), анизотропия сопротивления в магнитном поле проявляется в еще большей степени.

Эти эффекты свидетельствуют о необходимости учета теорией взаимодействия электронов с решеткой.

В настоящей работе исследовано поведение сопротивления монокристаллов гексагональных цинка и кадмия в магнитном поле до 18 килогауссов при температурах жидкого водорода и гелия с точки зрения того, как проявляется это взаимодействие в зависимости от кристаллической структуры. Существенная зависимость эффекта от ориентации осей кристалла была наблюдена и для Zn (³) и для Cd (⁴) при азотной температуре.

Значительно в меньшей степени, чем поперечный эффект, исследовано увеличение сопротивления в продольном магнитном поле. Этот эффект для Zn и Cd также рассмотрен в данной работе.

2. Большинство монокристаллов изготовлено из Zn и Cd фирмы «Хилгер» (для спектроскопии) частично по методу Бриджмена (⁵), частично по методу Капицы (⁶). Малое остаточное сопротивление образцов свидетельствует о незначительности примесей. На гониометре по методу Яковлевой (⁷) определялся угол α между плоскостью базиса и осью образца, а также угол β между осью [1000], лежащей в плоскости базиса, и осью образца. Для большинства исследованных монокристаллов $\alpha = 3$ и лишь для Zn10 и Cd4 $\beta > \alpha$. Компенсационная схема позволяла измерять сопротивление с точностью до $10^{-7}\Omega$.

3. При вращении монокристалла с плоскостью базиса, почти параллельной оси образца, в поперечном магнитном поле при $T \approx 80^{\circ}$ К. получается ротационная диаграмма, представляющая собой периодическую кривую с максимумом, когда плоскость базиса перпендикулярна к полю, и минимумом, когда она параллельна полю.

При $T = 4.2^{\circ}$ К. для монокристалла той же ориентации помимо возрастания величины эффекта диаграмма усложняется (фиг. 1). На месте

максимума ($\Theta = 90^{\circ}$) появляется минимум, менее глубокий, чем при $\Theta = 0^{\circ}$. Кроме того появляются дополнительные изгибы при $\Theta = \pm 30^{\circ}$. При повышении температуры и уменьшении поля максимумы и минимумы диаграммы сглаживаются. На фиг. 2 приведена ротационная диаграмма при $T = 4.2^{\circ}$ К. для монокристалла Cd с той же ориентацией плоскости базиса. Она почти идентична с диаграммой для цинка.

Представляет интерес измерение зависимости увеличения сопротивления от поля при характеристических углах ротационной диаграммы. Кривые такой зависимости, соответствующие $\Theta = 0^{\circ}$ и $\Theta = 90^{\circ}$ фиг. 1, приведены на фиг. 3. Они не только отличаются по характеру, но при $\Theta = 90^{\circ}$ зависимость представляется функцией с производной, лишенной монотонности. Как видно из фиг. 3, такая аномальная зависимость наблюдается лишь в узком интервале углов и при $\Theta = 85^{\circ}$ уже совершенно сглажена.

856

Если снимать диаграммы вращения для монокристаллов с последовательно увеличивающимся углом α , то характер диаграмм постепенно изменяется и при $\alpha \approx 90^{\circ}$ кривая имеет 3 максимума при вращении на 180° соответственно вращению около оси 6-го порядка.

В табл. 1 приведены данные для образцов Zn, отношение $\frac{RT}{R_{0}\circ c}$, анизотропия диаграммы вращения $\frac{\Delta R_{\max}}{\Delta R_{\min}}$ и усредненный по углам диаграммы поперечный эффект при $T = 20.4^{\circ}$ и 4.2° К. Для Zn видно, что при H=Const средний поперечный эффект уменьшается с увеличением α . При гелиевой температуре на эту зависимость накладывается еще сильная зависимость от остаточного сопротивления образцов. Такую зависимость от α подтверждают и данные для Cd.

Таблица 1

·	а—угол между пл. базиса и осью образца	$\frac{R_{20.4}}{R_{0}\circ C} \times 10^4$	$\frac{R_{4.2^{\circ}}}{R_{0^{\circ}\mathrm{C}}} imes 10^{4}$	$T = 20.4^{\circ} \text{ K}, H = 11.5 \text{ kG}$		$T = 4.2^{\circ} \text{ K}, H = 12.9 \text{ kG}$	
				$\frac{\Delta R}{\Delta R} \max_{\min}$	$\frac{\Delta R \perp}{R_{0} \circ c} \times 10^{4}$	$\frac{\Delta R_{\max}}{\Delta R_{\min}}$	$\left \frac{\Delta R \perp}{R_{0^{\circ}C}} \times 10^{3} \right $
Zn 4 Zn10 Zn 2 Zn 8 Zn12 Zn 7 Zn15 Zn 5 Zn 6 Zn17 Zn14 Zn 1 Zn 9	2° 2° 4° 5° 10° 19° 24° 41° 75° 80° 85° Иоли- кристалл Поли-	58 57 62 62 68 60 65 87 172 67 59 59	4.0 4.7 5.6 5.8 3.7 6.2 3.6 7.6 4.9 5.7	$ \begin{array}{c} 1.5_{2} \\ 1.5_{3} \\ 1.5_{2} \\$	$ \begin{array}{r} 12_{2} \\ 12_{4} \\ 11_{6} \\ \\ 11_{5} \\ 11_{3} \\ \\ 9_{1} \\ \\ 5_{2} \\ 10_{7} \\ 10_{6} \\ \end{array} $	14.4 8.2 9.7 4.2 2.3 2.9 1.6 1.2 1.1	75 62 80 41 64 52 69 48 35

Эффект для поликристаллов является приблизительно средним по сравнению с монокристаллами предельных ориентаций.

4. на фиг. 4 приведена для поликристалла Zn зависимость сопротивления от поля в поперечном и продольном полях при 4.2° К. Продольный эффект резко отличается от поперечного тем, что имеет характер насыщения. Поперечный и продольный эффекты для поликристалла Cd имеют такой же характер, что установил Милнер (⁸).

При водородной температуре продольный эффект имеет также характер насыщения. При температуре жилкого азота продольный эффект обоих металлов не обнаруживает признаков насыщения (^{3,9}).

5. Одинаковость явления насыщения продольного эффекта при $T = 20.4^{\circ}$ и 4.2° К. для Zn и Cd, повидимому, обусловлена подобием их структуры. Мы рассмотрели зависимость продольного эффекта от взаимодействия электронов с решеткой, для чего был измерен продольный эффект для монокристаллов с различной ориентацией плоскости базиса. При этом, как видно из табл. 2, оказывается, что продольный эффект имеет при $T = 20.4^{\circ}$ К. максимальное значение вблизи $\alpha = 45^{\circ}$. Затем обнаружено, что при водородной температуре, так же как при азотной и комнатной, если снимать диаграмму вращения около оси, перпендикулярной к направлениям тока

1-2 - Донлады Анад. Наун СССР, 1939, т. XXIV, № 9

Таблица 2

	между иса 5разца	$T = 20.4^{\circ} \text{ K}$ H = 11.5 kG	$T = 4.2^{\circ} \text{ K } H = 11.5 \text{ kG}$		
	аугол пл. баз и осыо об	$\frac{\Delta R_{11}}{R_{0^{\circ}C}} \times 10^{4}$	$\frac{\Delta R_{11}}{R_0 \circ c} \times 10^4$	$\frac{\mathrm{R}}{\mathrm{R}_0 \circ \mathrm{C}} \times 10^4$	
Zn 4 Zn10 Zn12 Zn 7 Zn15 Zn 5 Zn 6 Zn13 Zn14 Zn 1 Zn 9	2° 2° 10° 19° 24° 41° 75° 80° 85° Поли- кристалл Поли- кристалл	$\begin{array}{c} 3_5\\ 3_4\\ 4_8\\ 6_1\\ 5_5\\ 8_0\\ 4_6\\ 2_3\\ 1_4\\ 5_3\\ 4_7\end{array}$	$ \begin{array}{c} 6 \\ 3 \\ -26 \\ 47 \\ -33 \\ \\ \\ 16 \end{array} $	$ \begin{array}{c} 10 \\ 12 \\ 32 \\ 21 \\ 37 \\ - \\ 21 \\ 21 \end{array} $	

и поля и параллельной плоскости базиса, то минимум и максимум совпадают соответственно с продольным и поперечным положениями образца лишь при $\alpha \approx 0^{\circ}$ и $\alpha \approx 90^{\circ}$. При промежуточных ориентациях плоскости базиса минимум сдвинут к углу, при котором плоскость ближе к ориентации, параллельной относительно поля. При гелиевой температуре оба эти явления почти незаметны, повидимому, из-за значительного влияния даже малых неточностей в параллельности тока полю.

6. Теория Франка—Зоммерфельда не дает правильного описания поперечного эффекта из-за неучета анизотропии связи элекронов в решетке. Однако формальный учет анизотропии теорией приводит к результату, по которому с увеличением флуктуаций времени между столкновениями эффект увеличивается. Можно предположить, что в случае гексагональной решетки флуктуации наименьшие, когда ток течет вдоль гексагональной оси. Этим можно объяснить зависимость среднего поперечного эффекта от ориентации плоскости [базиса.

Аномальная зависимость от поля, наблюдаемая в весьма узком интервале углов, повидимому, также обусловлена эффектами взаимодействия электронов с решеткой.

Связь ротационной диаграммы со структурой кристалла может быть объяснена с точки зрения гипотезы о распространении тока в некоторых преимущественных плоскостях решетки кристалла. Такой плоскостью можно считать плоскость базиса, в направлении которой электропроводность является наибольшей. Когда ток параллелен плоскости базиса и последняя становится параллельной полю, сила Лоренца стремится отклонить электроны из плоскости базиса. Однако вследствие больших направляющих сил в этой плоскости при этом происходит меньшее отклонение электронов, чем когда, например, сила Лоренца параллельна плоскости базиса. Этим можно объяснить минимум увеличения сопротивления при $\Theta = 90^{\circ}$ можно приписать аналогичному действию боковых плоскостей призмы. Результаты на монокристаллах других металлов допускают такое же объяснение явления.

7. С точки зрения гипотезы о «плоскостном» распространении тока можно объяснить и зависимость продольного эффекта от ориентации а также и смещение минимума в диаграммах вращения (п. 5). К «истинному» продольному эффекту, имеющему место при $\alpha = 0^{\circ}$ и $\alpha = 90^{\circ}$, добавляется часть, обусловленная микроскопическими составляющими тока, перпендикулярными к полю, появляющимися в результате направляющего действия на электроны плоскости базиса.

Украинский Физико-технический институт	Поступило
Харьков	13 VII 1939

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ E. Justi a. H. Scheffers, Phys. ZS, 37, 383. 1936 (Au); Phys. ZS., 37, 475, 1936 (Au); Actes du VII Congr. Inst. du Froid, VII, 217 1936 (Au); Phys. ZS, 37, 700, (1936); Phys. ZS, 38, 891, (1937); Phys. ZS, 39, 592, (1938) (Pb).² W. J. De H a as a. oth., Leid. Com., 229 (1933); Leid. Com., 231b (1933); Leid. Com., 237d (1935); Physica, 4, 767, 1937 (Ga); Leid. Com. 207a (1930); Leid. Com., 210a (1930); Leid. Com., 210b (1930); Leid. Com., 237b (1935) (Bi). ³ B. G. L as a rew a. M. M. Noskov, Sow. Phys; 13, 130 (1938). ⁴ C. I. Milner, Proc. Camb. Phil. Soc. 33, 145 (1937). ⁵ Bridgman, Proc. Amer. Acad. Arts Sci 60, 307 (1925). ⁶ P. Kapitza, Proc. Roy. Soc, A, 119, 358 (1928). ⁷ Э. С. Яковлева, ЖЭТФ 3, 455 (1933). ⁸ C. J. Milner. Proc. Roy. Soc. A. 160, 207 (1937). ⁹ P. Kapitza, Proc. Roy. Soc. A. 123, 292, (1929). ¹⁰ A. Sommerfeld a. N. H. Frank, Rev. mod. Phys. 3, I (1931).