Доклады Академии Наук СССР 1939. том XXIV, № 8

МЕХАНИКА

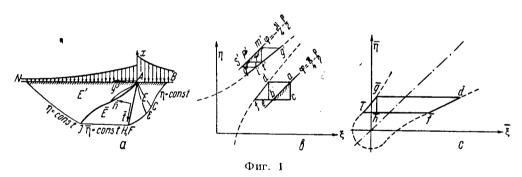
в. в. соколовский

обобщенная задача прандтля для слоистой земляной среды

(Представлено академиком Н. Е. Кочиным 27 VI 1939)

В напечатанной на стр. 734 статье мы обобщили теорию предельного равновесия [см. (¹)] на случай среды, усложненной наличием в ней горизонтальных слоев, вдоль которых коэффициенты трения и сцепления меньше, чем соответствующие коэффициенты по другим направлениям.

 \hat{H} иже мы приводим для такой земляной среды решение задачи, названной нами [см. (2)] обобщенной задачей Прандтля.



Вдоль участка AB задана нормальная нагрузка $\sigma_x(y)$; требуется определить минимальную нормальную нагрузку вдоль AN, препятствующую выпиранию земли на этом участке.

Рассмотрим случай $\sigma_x'(y) > 0$ вдоль AB, соответствующий монотонному возрастанию нагрузки вдоль оси y на этом участке.

Разберем сперва поставленную задачу при отсутствии массовых сил. Введем в рассмотрение две плоскости (ξ, η) и $(\overline{\xi}, \overline{\eta})$, причем плоскость (ξ, η) многолистная $(\phi$ иг. 1).

На первом листе плоскости (ξ , η) проводим $\eta = \xi - \frac{\pi}{2} + \rho$, на которой отрезок ab соответствует участку нагрузки AB. В треугольнике abc на верхнем листе, как и в (1), решаем задачу Cauchy для уравнений (5) статьи (1). На втором листе проводим кривую (12') статьи (1).

Точки пересечения этой кривой с характеристиками $\eta = {
m Const},$ проходящими через a и b, обозначим через d и f. Отрезку характеристики

ad соответствует на плоскости (x, y) одна точка A с координатами (o, o). Поэтому вдоль ad положим x=0, y=0.

Решая задачу Goursat для уравнений (5) статьи $\binom{1}{2}$, как и в $\binom{1}{2}$, определяем x, y в прямоугольнике adec, в результате чего получаем $x=x\left(\eta
ight),\;y=y\left(\eta
ight)$ вдоль отрезка характеристики de.

Пользуясь формулами (1 (11), определим φ в точках d и f:

$$\varphi_d = \varphi_{\text{II}}^* (\eta_a), \quad \varphi_f = \varphi_{\text{II}}^* (\eta_b).$$

На плоскости $(\overline{\xi},\overline{\eta})$ проведем кривые (25') и (25''), а подставив в (25') φ_d и φ_t получим точки d и f.

Точки пересечения кривой (25") с характеристиками $\bar{\eta} = \text{Const}$, проходящими через \overline{d} и \overline{f} , обозначим через \overline{g} и \overline{i} (фиг. 1c).

Пользуясь формулами (25") определим φ в точках \overline{g} и \overline{i} :

$$\varphi_{\overline{g}}^{-} = \overline{\varphi}_{\mathrm{III}}^{*} (\overline{\eta}_{d}), \quad \varphi_{\overline{i}}^{-} = \overline{\varphi}_{\mathrm{III}}^{*} (\overline{\eta}_{\overline{f}}).$$

На третьем листе плоскости (ξ, η) проведем кривую (11") и прямую $\eta=\xi+\frac{\pi}{2}+\rho$, а подставив в (11") $\phi_{\overline{g}}$ и $\phi_{\overline{i}}$, получим точки g' и i'.

Точки пересечения прямой $\eta=\xi+rac{\pi}{2}+
ho$ с характеристиками $\eta= ext{Const},$

Далее, проводя показанное на фиг. 1 b построение, получим точки $t',\,p',\,q',\,r'.$

В области \overline{dgif} на плоскости $(\overline{\xi}, \overline{\eta})$ пользуемся решениями (24):

$$y + x \operatorname{tg} \overline{\rho} = \Phi(\overline{\xi}), \quad x = \overline{\Psi}(\overline{\eta}).$$
 (a)

Отрезку характеристики \overline{dg} соответствует на плоскости (x,y) одна точка A с координатами (o, o), поэтому вдоль dg

$$x = 0$$
, $y = 0$.

Отсюда, по формулам (а) видим, что

$$\Phi(\overline{\xi}) = 0$$

И

$$y + x \operatorname{tg} \overline{\rho} = 0$$

в трапеции $d \, \bar{g} \, \bar{h} \, \bar{f}$.

Таким образом, транеция $ar{d}\ ar{g}\ ar{h}\ ar{f}$ соответствует прямой $y+x\mathrm{tg}\ ar{arrho}=0$ на плоскости (x, y), отделяющей область, в которой имеет место (3), от области, где выполнены (4).

Треугольник $\overline{g}h\overline{i}$ соответствует области \overline{E} на плоскости (x,y).

Посмотрим, как изменяются напряжения при переходе через эту линию, обозначенную на фиг. 1 через AF.

Для этого определим вдоль нее напряжения σ_n , σ_t , τ_{nt} (2.

Подставив в известные формулы преобразования компонентов напряжений при переходе от одной системы координат к другой,

$$\begin{split} &\sigma_n = \sigma_x \cos^2 \Theta + \sigma_y \sin^2 \Theta + \tau_{xy} \sin 2\Theta, \\ &\sigma_t = \sigma_x \sin^2 \Theta + \sigma_y \cos^2 \Theta - \tau_{xy} \sin 2\Theta, \\ &\tau_{nt} = \frac{\sigma_y - \sigma_x}{2} \sin 2\Theta + \tau_{xy} \cos 2\Theta, \end{split}$$

Нумерацию формул, встречающуюся в тексте, см. на стр. 731. $(2\ n\ u\ t\ oбозначают\ cooтветственно нормаль и касательную к линии <math>AF$ (фиг. 1a).

формулы (20) и $\Theta = \frac{\pi}{2} - \overline{\rho}$, получим

$$\begin{split} \sigma_n &= -\sin\rho \, \text{ctg} \, \overline{\rho} \, \overline{\eta} - \frac{\overline{K}}{\sin\rho} \, ; \\ \sigma_t &= \frac{2\sin\rho}{\sin2\overline{\rho}} \, \overline{\xi} + \sin\rho \, \text{tg} \, \overline{\rho} \, \overline{\eta} - \frac{\overline{K}}{\sin\overline{\rho}} \, ; \\ \tau_{nt} &= \sin\rho\overline{\eta}. \end{split}$$

Из этих формул видно, что σ_n и τ_{nt} не зависят от $\overline{\xi}$, а следовательно постоянны вдоль характеристик $\overline{\eta} = \text{Const}$ в области трапеции $\overline{d} \, \overline{g} \, \overline{i} \, \overline{f}$.

Следовательно σ_n и τ_{nt} в точках отрезков $d\bar{t}$ и $g\bar{h}$, лежащих на одной характеристике $\overline{\eta} = \text{Const}$, принимают одинаковые значения.

Отсюда следует непрерывность σ_n и au_{nt} при переходе через AFна плоскости (x, y).

Напряжение σ_t претерпевает при этом переходе скачок.

В треугольнике $d\,\epsilon f$ на плоскости ($\xi,\;\eta$) нам известны $x,\,y$ вдоль $d\,e$ и соотношение $y + x \operatorname{tg} \rho = 0$ вдоль df.

Решая смешанную задачу, определяем

$$x = x(\xi, \eta), \quad y = y(\xi, \eta) \tag{b}$$

в треугольнике dfe.

Взяв функции (b) вдоль df $x[\xi_{II}(\varphi), \eta_{II}(\varphi)]$ и подставив $\varphi = \varphi_{II}(\eta),$ получим

$$x\left\{\xi_{\Pi}\left[\varphi_{\Pi}^{*}\left(\overline{\eta}\right)\right],\ \eta_{\Pi}\left[\overline{\varphi}_{\Pi}^{*}\left(\overline{\eta}\right)\right]\right\}x^{*}\left(\eta\right)$$

вдоль $d\bar{f}$ на плоскости $(\bar{\xi}, \bar{\eta})$.

Из равенства

$$\Psi(\bar{\eta}) = x^*(\bar{\eta})$$

определяем Ψ в трапеции dgif.

Таким образом,

$$x = x^* (\overline{\eta}) \tag{c}$$

в трапеции dgif, а следовательно и вдоль gi.

Взяв функцию (c) вдоль $gi x^* [\eta_{III}(\varphi)]$ и подставив в нее $\varphi = \varphi_{III}^* (\eta)$, получим

$$x = x^* \left\{ \stackrel{-}{\eta_{\rm III}} \left[\varphi_{\rm III}^* \left(\eta \right) \right] \right\}$$

вдоль g'i' на плоскости (ξ, η) .

Вдоль отрезка характеристики g'm' x=0, y=0. Решая последовательно для уравнений (5) статьи (1) смешанные задачи в треугольниках g'm't', m't'p', t'r'i', задачу Goursat в прямоугольниках r'p'q'i', и смешанную в треугольнике p's'q', получим

$$x = x(\xi, \eta), \quad y = y(\xi, \eta) \tag{d}$$

в параллелограмме g'm's'i' на плоскости (ξ, η) .

Взяв функции (d) вдоль g'i'

$$x\left[\xi_{\text{III}}\left(\varphi\right),\,\eta_{\text{III}}\left(\varphi\right)\right],\quad y\left[\xi_{\text{III}}\left(\varphi\right),\,\eta_{\text{III}}\left(\varphi\right)\right]$$

м подставив в них $\varphi = \overline{\varphi}_{\text{III}}(\overline{\xi})$, получим $x\left\{\xi_{\Pi \Pi}\left[\overline{\varphi}_{\Pi \Pi}\left(\overline{\xi}\right)\right],\,\eta_{\Pi \Pi}\left[\overline{\varphi}_{\Pi \Pi}\left(\overline{\xi}\right)\right]\right\}=x_{*}\left(\overline{\xi}\right),\,\,y\left\{\xi_{\Pi \Pi}\left[\overline{\varphi}_{\Pi \Pi}\left(\overline{\xi}\right)\right],\,\eta_{\Pi \Pi}\left[\overline{\varphi}_{\Pi \Pi}\left(\overline{\xi}\right)\right]\right\}=y_{*}\left(\overline{\xi}\right)$ вдоль gi на плоскости $(\xi, \overline{\eta})$.

Из равенства

$$y_*(\bar{\xi}) + x_*(\bar{\xi}) \operatorname{tg} \bar{\rho} = \Phi(\bar{\xi})$$

определяем Φ в треугольнике \bar{gih} .

Таким образом, получим на плоскости $(\bar{\xi}, \bar{\eta})$

$$y=y(\bar{\xi},\,\bar{\eta})=\left\{\begin{array}{ll}x=x^*(\bar{\eta});\\y_*(\bar{\xi})+[x_*(\bar{\xi})-x^*(\bar{\eta})]\;\mathrm{tg}\,\bar{\rho}&\mathrm{в}\;\mathrm{треугольникe}\;\bar{g}\bar{i}\bar{h},\\-x^*(\bar{\eta})\,\mathrm{tg}\,\bar{\bar{\rho}}&\mathrm{в}\;\mathrm{трапеции}\;\bar{d}\,\bar{g}\bar{h}f.\end{array}\right.$$

Обращая функции (d), получим

$$\xi = \xi(x, y), \quad \eta = \eta(x, y) \tag{e}$$

в области E'.

Так как вдоль m's' $\eta=\xi+\frac{\pi}{2}+\rho$, то получим вдоль m's'

$$\sigma^*(y) = e^{\operatorname{tg} \rho \left(2\eta - \frac{\pi}{2} + \rho\right)},$$

где $\eta = \eta(o, y)$ взята по формуле (e). Вслед за этим получим

$$\sigma_x(y) = \sigma^*(y) (1 - \sin \rho) - \frac{K}{\sin \rho}.$$

Совершенно аналогично решается задача для случаев $\sigma_{x}'(y) < 0$ и σ_x = Const вдоль AB. Если нагрузка вдоль AB состоит из нескольких участков, на каждом из которых она изменяется монотонно, то плоскость (ξ, η) будет многолистной, а остальные рассуждения аналогичны приведенным выше.

Решение разобранной задачи легко обобщается и на случай наличия массовых сил.

При этом вводим в рассмотрение плоскости (α,β) и $(\overline{\alpha},\overline{\beta})$, причем плоскость (α, β) многолистная.

В области \overline{E} (фиг. 1a) пользуемся решениями (23). В областях E и E' обобщение разобранной выше задачи на случай наличия массовых сил проводится так же, как и в статье (1).

Институт механики Академия Наук СССР Поступило 1 VII 1939

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. В. Соколовский, ДАН, XXII, № 4 (1939). ² В. В. Соколовский, ДАН, XXIII, № 1 (1939).